--- base_model: Darkknight535/OpenCrystal-12B-L3 library_name: transformers tags: - not-for-all-audiences - llama-cpp - gguf-my-repo model-index: - name: OpenCrystal-12B-L3 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 40.71 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Darkknight535/OpenCrystal-12B-L3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 31.84 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Darkknight535/OpenCrystal-12B-L3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 7.93 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Darkknight535/OpenCrystal-12B-L3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 7.49 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Darkknight535/OpenCrystal-12B-L3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 5.74 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Darkknight535/OpenCrystal-12B-L3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 29.34 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Darkknight535/OpenCrystal-12B-L3 name: Open LLM Leaderboard --- # Triangle104/OpenCrystal-12B-L3-Q5_K_S-GGUF This model was converted to GGUF format from [`Darkknight535/OpenCrystal-12B-L3`](https://huggingface.co/Darkknight535/OpenCrystal-12B-L3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Darkknight535/OpenCrystal-12B-L3) for more details on the model. --- Model details: - This is a finetuned language model. (I recommend using this one v2 and v2.1 are not good enough) Rohma 128K?? L3.1 Variant here Instruct Template Default llama3 instruct and context preset, but here is the one i use. Instruct Context Samplers Creative Temp : 1.23 Min P : 0.05 Repetition Penalty : 1.05 [And everything else neutral] Normal Temp : 0.6 - 0.8 Min P : 0.1 Repetition Penalty : 1.1 [And everything else neutral] Pro Tip You can uncheck Include Names option in sillytavern, to force it to speak as others dynamically. Not Recommended Features Can speak as other npc automatically. Creative (Swipes are crazy.) Coherent (Sometime gets horny) Output feels like you're using Character.ai Follows prompt better Likes higher context length. (12K easily tested) can summarize and generate image prompts well [The Above image's prompt is generated in a roleplay by this model] (Possible : Due to llama-3-instruct as base) Instruct Prompt You're {{char}}, follow {{char}} personality and plot of the story, Don't impersonate as {{user}}, Speak as others NPC except {{user}} when needed. Be Creative, Create various interesting events and situations during the story. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/OpenCrystal-12B-L3-Q5_K_S-GGUF --hf-file opencrystal-12b-l3-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/OpenCrystal-12B-L3-Q5_K_S-GGUF --hf-file opencrystal-12b-l3-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/OpenCrystal-12B-L3-Q5_K_S-GGUF --hf-file opencrystal-12b-l3-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/OpenCrystal-12B-L3-Q5_K_S-GGUF --hf-file opencrystal-12b-l3-q5_k_s.gguf -c 2048 ```