--- license: apache-2.0 language: - en tags: - chat - llama-cpp - gguf-my-repo pipeline_tag: text-generation library_name: transformers base_model: anthracite-org/magnum-v4-12b --- # Triangle104/magnum-v4-12b-Q5_K_M-GGUF This model was converted to GGUF format from [`anthracite-org/magnum-v4-12b`](https://huggingface.co/anthracite-org/magnum-v4-12b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/anthracite-org/magnum-v4-12b) for more details on the model. --- Model details: - This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of mistralai/Mistral-Nemo-Instruct-2407. Prompting A typical input would look like this: [INST] SYSTEM MESSAGE USER MESSAGE[/INST] ASSISTANT MESSAGE[INST] USER MESSAGE[/INST] SillyTavern templates - Below are Instruct and Context templates for use within SillyTavern. context template default SillyTavern template works fine instruct template - default SillyTavern template works fine Axolotl config - See axolotl config base_model: mistralai/Mistral-Nemo-Instruct-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer hub_model_id: anthracite-org/magnum-v4-12b-r2 hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system type: custommistralv3tekken - path: anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system type: custommistralv3tekken - path: anthracite-org/kalo-opus-instruct-3k-filtered-no-system type: custommistralv3tekken - path: anthracite-org/nopm_claude_writing_fixed type: custommistralv3tekken - path: anthracite-org/kalo_opus_misc_240827_no_system type: custommistralv3tekken - path: anthracite-org/kalo_misc_part2_no_system type: custommistralv3tekken #chat_template: chatml shuffle_merged_datasets: true #default_system_message: "You are an assistant that responds to the user." dataset_prepared_path: /workspace/data/magnum-12b-data val_set_size: 0.0 output_dir: /workspace/data/12b-fft-out sequence_len: 32768 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: 12b-magnum-fft wandb_entity: wandb_watch: wandb_name: v4-r2-attempt-01 wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: pad_token: Credits - We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow. We would also like to thank all members of Anthracite who made this finetune possible. Datasets anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system anthracite-org/kalo-opus-instruct-3k-filtered-no-system anthracite-org/nopm_claude_writing_fixed anthracite-org/kalo_opus_misc_240827_no_system anthracite-org/kalo_misc_part2_no_system Training - The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/magnum-v4-12b-Q5_K_M-GGUF --hf-file magnum-v4-12b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/magnum-v4-12b-Q5_K_M-GGUF --hf-file magnum-v4-12b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/magnum-v4-12b-Q5_K_M-GGUF --hf-file magnum-v4-12b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/magnum-v4-12b-Q5_K_M-GGUF --hf-file magnum-v4-12b-q5_k_m.gguf -c 2048 ```