--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlnet-large-cased-detect-dep results: [] --- # xlnet-large-cased-detect-dep This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6641 - Accuracy: 0.724 - F1: 0.7956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.623 | 1.0 | 1502 | 0.5540 | 0.744 | 0.8184 | | 0.6003 | 2.0 | 3004 | 0.5512 | 0.737 | 0.8084 | | 0.5501 | 3.0 | 4506 | 0.6641 | 0.724 | 0.7956 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3