--- language: - fi pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers widget: - text: "Minusta täällä on ihana asua!" --- # Uncased Finnish Sentence BERT model Finnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences *using [the cased model](https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase)* can be found [here](http://epsilon-it.utu.fi/sbert400m). ## Training - Library: [sentence-transformers](https://www.sbert.net/) - FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1 - Data: The data provided [here](https://turkunlp.org/paraphrase.html), including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative) - Pooling: mean pooling - Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. [Details on labels](https://aclanthology.org/2021.nodalida-main.29/) ## Usage The same as in [HuggingFace documentation](https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens). Either through `SentenceTransformer` or `HuggingFace Transformers` ### SentenceTransformer ```python from sentence_transformers import SentenceTransformer sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] model = SentenceTransformer('TurkuNLP/sbert-uncased-finnish-paraphrase') embeddings = model.encode(sentences) print(embeddings) ``` ### HuggingFace Transformers ```python from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') model = AutoModel.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results A publication detailing the evaluation results is currently being drafted. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors While the publication is being drafted, please cite [this page](https://turkunlp.org/paraphrase.html). ## References - J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021. - N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019. - A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019.