--- library_name: transformers model_name: Vikhr-Qwen-2.5-1.5B-Instruct base_model: Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct language: - ru - en license: apache-2.0 datasets: - Vikhrmodels/GrandMaster-PRO-MAX tags: - mlx --- # Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit The Model [Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit) was converted to MLX format from [Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct) using mlx-lm version **0.20.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct-MLX_4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```