--- language: - code license: bigcode-openrail-m datasets: - bigcode/the-stack-dedup - Vipitis/Shadertoys pipeline_tag: text-generation tags: - code - shader base_model: bigcode/santacoder widget: - text: void mainImage( out vec4 fragColor, in vec2 fragCoord ) example_title: mainImage group: Shadertoy model-index: - name: santacoder-finetuned-the-stack-glsl results: - task: type: text-generation name: ShaderEval dataset: type: Vipitis/Shadertoys-fine name: Shadertoys-fine config: return_completion revision: 0.0.2 metrics: - type: exact_match value: 0.550 name: 300 samples, greedy decoding verified: false --- [Santacoder](https://huggingface.co/bigcode/santacoder) finetuned on [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys) for 1000 steps with a batch size of 2 and full sequence length of 2048. adapted finetuning script found [here](./train.py) Try model in the [ShaderCoder](https://huggingface.co/spaces/Vipitis/ShaderCoder) demo space ### Finetuning parameters ```sh python3 train.py --model_path "bigcode/santacoder" \ --dataset_name "Vipitis/Shadertoys" \ --data_column "code" \ --split "train" \ --seq_length 2048 \ --max_steps 1000 \ --batch_size 2 \ --gradient_accumulation_steps 4 \ --learning_rate 5e-5 \ --num_warmup_steps 100 \ --eval_freq 100 \ --save_freq 100 \ --log_freq 1 \ --output_dir "checkpoint_dir" \ --no_fp16 ``` Main purpose of this model is to explore if finetuning models improves performance on [ShaderEval](https://huggingface.co/spaces/Vipitis/ShaderEval), which reached 0.550 with 300 samples. ### Disclaimer While the train/test split is held out, there is a lot of data contamination. The model results can't be trusted for this simple benchmark. Better tasks for the benchmark will be developed and tested against these models. License carried over from model, however training data has an undefied license. Check details in [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys).