--- language: - code license: bigcode-openrail-m datasets: - bigcode/the-stack-dedup pipeline_tag: text-generation tags: - code - shader base_model: bigcode/santacoder widget: - text: void mainImage( out vec4 fragColor, in vec2 fragCoord ) example_title: mainImage group: Shadertoy model-index: - name: santacoder-finetuned-the-stack-glsl results: - task: type: text-generation name: ShaderEval dataset: type: Vipitis/Shadertoys-fine name: Shadertoys-fine config: return_completion revision: 0.0.2 metrics: - type: exact_match value: 0.380 name: 300 samples, greedy decoding verified: false --- [Santacoder](https://huggingface.co/bigcode/santacoder) finetuned on [The-Stack-dedup (GLSL subset)](https://huggingface.co/datasets/bigcode/the-stack-dedup/tree/main/data/glsl) for 1000 steps with a batch size of 2 and full sequence length of 2048. adapted finetuning script found [here](./train.py) ### Finetuning parameters ```sh python3 train.py --model_path "bigcode/santacoder" \ --dataset_name "bigcode/the-stack-dedup" \ --subset "data/glsl" \ --data_column "content" \ --split "train" \ --seq_length 2048 \ --max_steps 1000 \ --batch_size 2 \ --gradient_accumulation_steps 4 \ --learning_rate 5e-5 \ --num_warmup_steps 100 \ --eval_freq 100 \ --save_freq 100 \ --log_freq 1 \ --output_dir "checkpoint_dir" \ --no_fp16 ``` Main purpose of this model is to explore if finetuning models improves performance on [ShaderEval](https://huggingface.co/spaces/Vipitis/ShaderEval), which reached 0.380 with 300 samples. License carried over from model, and the finetuning dataset holds the same license.