--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - sst2 metrics: - accuracy model-index: - name: distilbert_base_SST2 results: - task: name: Text Classification type: text-classification dataset: name: sst2 type: sst2 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8967889908256881 --- # distilbert_base_SST2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3718 - Accuracy: 0.8968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4401 | 0.06 | 500 | 0.3732 | 0.8417 | | 0.3465 | 0.12 | 1000 | 0.3451 | 0.8761 | | 0.3408 | 0.18 | 1500 | 0.3465 | 0.8612 | | 0.3059 | 0.24 | 2000 | 0.4580 | 0.8589 | | 0.2974 | 0.3 | 2500 | 0.3338 | 0.8830 | | 0.3023 | 0.36 | 3000 | 0.4487 | 0.8475 | | 0.2636 | 0.42 | 3500 | 0.4330 | 0.8888 | | 0.2558 | 0.48 | 4000 | 0.4193 | 0.8876 | | 0.2466 | 0.53 | 4500 | 0.4343 | 0.8945 | | 0.2393 | 0.59 | 5000 | 0.4935 | 0.875 | | 0.2279 | 0.65 | 5500 | 0.3818 | 0.8876 | | 0.2181 | 0.71 | 6000 | 0.4003 | 0.8968 | | 0.2245 | 0.77 | 6500 | 0.3496 | 0.9048 | | 0.2279 | 0.83 | 7000 | 0.3759 | 0.9014 | | 0.2152 | 0.89 | 7500 | 0.4037 | 0.8899 | | 0.2174 | 0.95 | 8000 | 0.3718 | 0.8968 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0