--- license: apache-2.0 base_model: distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer datasets: - sst2 metrics: - accuracy model-index: - name: distilbert_base_SST2 results: - task: name: Text Classification type: text-classification dataset: name: sst2 type: sst2 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9151376146788991 --- # distilbert_base_SST2 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3690 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1335 | 0.06 | 500 | 0.5579 | 0.8911 | | 0.1666 | 0.12 | 1000 | 0.5413 | 0.8876 | | 0.1778 | 0.18 | 1500 | 0.7077 | 0.8544 | | 0.1746 | 0.24 | 2000 | 0.5727 | 0.875 | | 0.1632 | 0.3 | 2500 | 0.4972 | 0.8979 | | 0.1675 | 0.36 | 3000 | 0.4742 | 0.8991 | | 0.1573 | 0.42 | 3500 | 0.4943 | 0.8956 | | 0.1525 | 0.48 | 4000 | 0.4907 | 0.8819 | | 0.1394 | 0.53 | 4500 | 0.5010 | 0.8899 | | 0.1458 | 0.59 | 5000 | 0.5461 | 0.8876 | | 0.1588 | 0.65 | 5500 | 0.3364 | 0.9094 | | 0.1373 | 0.71 | 6000 | 0.4198 | 0.9163 | | 0.138 | 0.77 | 6500 | 0.3466 | 0.9128 | | 0.1383 | 0.83 | 7000 | 0.4064 | 0.9094 | | 0.1371 | 0.89 | 7500 | 0.4083 | 0.9002 | | 0.1373 | 0.95 | 8000 | 0.3690 | 0.9151 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0