--- license: cc-by-nc-nd-4.0 pipeline_tag: object-detection tags: - yolov9 - ultralytics - yolo - object-detection - pytorch - cs2 - Counter Strike --- Counter Strike 2 players detector ## Supported Labels ``` [ 'c', 'ch', 't', 'th' ] ``` ## All models - [yoloV8n_cs2](https://huggingface.co/Vombit/yolov8n_cs2) (6mb) - [yoloV8s_cs2](https://huggingface.co/Vombit/yolov8s_cs2) (21mb) - [yoloV9c_cs2](https://huggingface.co/Vombit/yolov9c_cs2) (50mb) ## How to use ```python # load Yolo from ultralytics import YOLO # Load a pretrained YOLO model model = YOLO(r'weights\yolov**_cs2.pt') # Run inference on 'image.png' with arguments model.predict( 'image.png', save=True, device=0 ) ``` ## Predict info Ultralytics YOLOv8.2.3 🚀 Python-3.10.11 torch-2.0.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4060, 8187MiB): - yolov9c_cs2_fp16.engine (640x640 5 ts, 5 ths, 5.0ms) - yolov9c_cs2.engine (640x640 5 ts, 5 ths, 15.1ms) - yolov9c_cs2.onnx (640x640 5 ts, 5 ths, 27.5ms) - yolov9c_cs2.pt (384x640 5 ts, 5 ths, 272.8ms) ## Dataset info Data from over 70 games, where the footage has been tagged in detail. ## Train info The training took place over 100 epochs. You can also support me with a cup of coffee: [donate](https://www.donationalerts.com/r/vombit_donation)