---
license: cc-by-nc-nd-4.0
pipeline_tag: object-detection
tags:
- yolov9
- ultralytics
- yolo
- object-detection
- pytorch
- cs2
- Counter Strike
---
Counter Strike 2 players detector
## Supported Labels
```
[ 'c', 'ch', 't', 'th' ]
```
## All models
- [yoloV8n_cs2](https://huggingface.co/Vombit/yolov8n_cs2) (6mb)
- [yoloV8s_cs2](https://huggingface.co/Vombit/yolov8s_cs2) (21mb)
- [yoloV9c_cs2](https://huggingface.co/Vombit/yolov9c_cs2) (50mb)
## How to use
```python
# load Yolo
from ultralytics import YOLO
# Load a pretrained YOLO model
model = YOLO(r'weights\yolov**_cs2.pt')
# Run inference on 'image.png' with arguments
model.predict(
'image.png',
save=True,
device=0
)
```
## Predict info
Ultralytics YOLOv8.2.3 🚀 Python-3.10.11 torch-2.0.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4060, 8187MiB):
- yolov9c_cs2_fp16.engine (640x640 5 ts, 5 ths, 5.0ms)
- yolov9c_cs2.engine (640x640 5 ts, 5 ths, 15.1ms)
- yolov9c_cs2.onnx (640x640 5 ts, 5 ths, 27.5ms)
- yolov9c_cs2.pt (384x640 5 ts, 5 ths, 272.8ms)
## Dataset info
Data from over 70 games, where the footage has been tagged in detail.
## Train info
The training took place over 100 epochs.
You can also support me with a cup of coffee: [donate](https://www.donationalerts.com/r/vombit_donation)