--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoints_28_9_microsoft_deberta_V4 results: [] --- # checkpoints_28_9_microsoft_deberta_V4 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2854 - Map@3: 0.5483 - Accuracy: 0.435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.2365 | 0.11 | 100 | 1.0631 | 0.7583 | 0.64 | | 0.8608 | 0.21 | 200 | 0.7329 | 0.8383 | 0.75 | | 0.8527 | 0.32 | 300 | 0.6985 | 0.8575 | 0.78 | | 0.744 | 0.43 | 400 | 0.6498 | 0.8625 | 0.785 | | 0.7686 | 0.53 | 500 | 0.7450 | 0.8575 | 0.765 | | 1.4098 | 0.64 | 600 | 1.3030 | 0.5575 | 0.4 | | 1.4246 | 0.75 | 700 | 1.3018 | 0.5575 | 0.435 | | 1.3987 | 0.85 | 800 | 1.2906 | 0.5450 | 0.41 | | 1.4121 | 0.96 | 900 | 1.2854 | 0.5483 | 0.435 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3