---
license: other
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- metaeval/reclor
- openbookqa
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- wenhu/TheoremQA
- TIGER-Lab/ScienceEval
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/uvfa4GVWrnd8SS6yBxRJZ.jpeg)
# 🔬 Einstein-7B
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on datasets related to science.
This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
This model's training was sponsored by [sablo.ai](https://sablo.ai).
See axolotl config
axolotl version: `0.3.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: sci-datasets/arc_challange_train_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/camelai_biology_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/camelai_chemistry_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/camelai_physics_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/openbookqa_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/reclor_science_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/scibench_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/scienceqa_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/theoremqa_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/tiger_scienceeval_alpaca.json
ds_type: json
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./science-mistral
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/science-mistral
# change #
gradient_accumulation_steps: 12
micro_batch_size: 6
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
# change #
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
```
# 📊 Datasets
Following datasets were used in this model:
- [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)
- [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)
- [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)
- [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)
- [openbookqa](https://huggingface.co/datasets/openbookqa)
- [reclor](https://huggingface.co/datasets/metaeval/reclor)
- [scibench](https://github.com/mandyyyyii/scibench)
- [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA)
- [TheoremQA](https://huggingface.co/datasets/wenhu/TheoremQA)
- [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval)
# 💬 Prompt Template
You can use this prompt template while using the model:
### Alpaca
```
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:
```
# 🤝 Acknowledgments
Thanks to Platypus for providing scripts to convert some of the datasets to Alpaca format: [Platypus/data_pipeline](https://github.com/arielnlee/Platypus/tree/main/data_pipeline)
Thanks to all the dataset authors mentioned in the datasets section.
Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.
[](https://github.com/OpenAccess-AI-Collective/axolotl)