--- license: other tags: - axolotl - generated_from_trainer base_model: chargoddard/internlm2-20b-llama model-index: - name: Stellaris-internlm2-20b-r512 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: chargoddard/internlm2-20b-llama model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: ARB/arb_law.json ds_type: json type: alpaca conversation: chatml - path: ARB/arb_math.json ds_type: json type: alpaca conversation: chatml - path: ARB/arb_mcat_reading.json ds_type: json type: alpaca conversation: chatml - path: ARB/arb_mcat_science.json ds_type: json type: alpaca conversation: chatml - path: ARB/arb_physics.json ds_type: json type: alpaca conversation: chatml dataset_prepared_path: last_run_prepared val_set_size: 0 output_dir: ./Weyaxi-test sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 512 lora_alpha: 256 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: huggingface wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: hub_model_id: Weyaxi/Weyaxi-test gradient_accumulation_steps: 4 # change micro_batch_size: 2 # change num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 save_steps: 20 save_total_limit: 5 debug: #deepspeed: deepspeed/zero3_bf16.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" tokens: - "<|im_start|>" ```

# Weyaxi-test This model is a fine-tuned version of [chargoddard/internlm2-20b-llama](https://huggingface.co/chargoddard/internlm2-20b-llama) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0