--- library_name: transformers license: apache-2.0 base_model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-babycry-v2 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: accuracy: 0.8043478260869565 - name: F1 type: f1 value: 0.7171293871136721 - name: Precision type: precision value: 0.6469754253308129 - name: Recall type: recall value: 0.8043478260869565 --- # wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-babycry-v2 This model is a fine-tuned version of [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8522 - Accuracy: {'accuracy': 0.8043478260869565} - F1: 0.7171 - Precision: 0.6470 - Recall: 0.8043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:| | 0.6078 | 0.4854 | 25 | 0.8682 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 | | 0.7269 | 0.9709 | 50 | 0.8559 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 | | 0.6815 | 1.4563 | 75 | 0.8204 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 | | 0.6144 | 1.9417 | 100 | 0.8417 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 | | 0.6246 | 2.4272 | 125 | 0.8454 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 | | 0.5687 | 2.9126 | 150 | 0.8527 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1