import torch from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline format_input = ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response:" ) class EndpointHandler: def __init__(self, path=""): # load the model tokenizer = AutoTokenizer.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained( path, device_map="auto", torch_dtype=torch.float16, ) # create inference pipeline self.pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_length=256, ) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) text_input = format_input.format(instruction=inputs) # pass inputs with all kwargs in data if parameters is not None: prediction = self.pipeline(text_input, **parameters) else: prediction = self.pipeline(text_input) # postprocess the prediction output = [ {"generated_text": pred["generated_text"].split("### Response:")[1].strip()} for pred in prediction ] return output