--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL --- GGUF version made with [llama.cpp 705b7ec](https://github.com/ggerganov/llama.cpp/commit/705b7ecf60e667ced57c15d67aa86865e3cc7aa7) Original model [deepseek-ai/DeepSeek-V2-Chat-0628](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat-0628)
Model Download | Evaluation Results | Model Architecture | API Platform | License | Citation
# DeepSeek-V2-Chat-0628 ## 1. Introduction DeepSeek-V2-Chat-0628 is an improved version of DeepSeek-V2-Chat. For model details, please visit [DeepSeek-V2 page](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) for more information. DeepSeek-V2-Chat-0628 has achieved remarkable performance on the LMSYS Chatbot Arena Leaderboard: Overall Ranking: #11, outperforming all other open-source models.Coding Arena Ranking: #3, showcasing exceptional capabilities in coding tasks.
Hard Prompts Arena Ranking: #3, demonstrating strong performance on challenging prompts.
## 2. Improvement Compared to the previous version DeepSeek-V2-Chat, the new version has made the following improvements: | **Benchmark** | **DeepSeek-V2-Chat** | **DeepSeek-V2-Chat-0628** | **Improvement** | |:-----------:|:------------:|:---------------:|:-------------------------:| | **HumanEval** | 81.1 | 84.8 | +3.7 | | **MATH** | 53.9 | 71.0 | +17.1 | | **BBH** | 79.7 | 83.4 | +3.7 | | **IFEval** | 63.8 | 77.6 | +13.8 | | **Arena-Hard** | 41.6 | 68.3 | +26.7 | | **JSON Output (Internal)** | 78 | 85 | +7 | Furthermore, the instruction following capability in the "system" area has been optimized, significantly enhancing the user experience for immersive translation, RAG, and other tasks. ## 3. How to run locally **To utilize DeepSeek-V2-Chat-0628 in BF16 format for inference, 80GB*8 GPUs are required.** ### Inference with Huggingface's Transformers You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/DeepSeek-V2-Chat-0628" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # `max_memory` should be set based on your devices max_memory = {i: "75GB" for i in range(8)} # `device_map` cannot be set to `auto` model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager") model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id messages = [ {"role": "user", "content": "Write a piece of quicksort code in C++"} ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ``` The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository. **Note: The chat template has been updated compared to the previous DeepSeek-V2-Chat version.** An example of chat template is as belows: ```bash <|begin▁of▁sentence|><|User|>{user_message_1}<|Assistant|>{assistant_message_1}<|end▁of▁sentence|><|User|>{user_message_2}<|Assistant|> ``` You can also add an optional system message: ```bash <|begin▁of▁sentence|>{system_message} <|User|>{user_message_1}<|Assistant|>{assistant_message_1}<|end▁of▁sentence|><|User|>{user_message_2}<|Assistant|> ``` ### Inference with vLLM (recommended) To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 8192, 8 model_name = "deepseek-ai/DeepSeek-V2-Chat-0628" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you?"}], [{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}], [{"role": "user", "content": "Write a piece of quicksort code in C++."}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` ## 4. License This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use. ## 5. Citation ``` @misc{deepseekv2, title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model}, author={DeepSeek-AI}, year={2024}, eprint={2405.04434}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## 6. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).