--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6949 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1595 | 0.99 | 28 | 0.5827 | 0.86 | | 0.122 | 1.98 | 56 | 0.5915 | 0.86 | | 0.0598 | 2.97 | 84 | 0.6342 | 0.86 | | 0.0233 | 4.0 | 113 | 0.6145 | 0.85 | | 0.0163 | 4.99 | 141 | 0.6766 | 0.86 | | 0.0125 | 5.98 | 169 | 0.6286 | 0.89 | | 0.0091 | 6.97 | 197 | 0.7157 | 0.86 | | 0.0088 | 8.0 | 226 | 0.6633 | 0.89 | | 0.0074 | 8.99 | 254 | 0.7196 | 0.87 | | 0.0074 | 9.91 | 280 | 0.6949 | 0.88 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3