--- license: apache-2.0 base_model: Yama/bert-base-uncased-finetuned-swag tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag results: [] --- # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [Yama/bert-base-uncased-finetuned-swag](https://huggingface.co/Yama/bert-base-uncased-finetuned-swag) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0061 - Accuracy: 0.9958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 150 | 1.3780 | 0.3592 | | No log | 2.0 | 300 | 1.3234 | 0.4383 | | No log | 3.0 | 450 | 1.3158 | 0.4992 | | 1.3577 | 4.0 | 600 | 1.1356 | 0.5792 | | 1.3577 | 5.0 | 750 | 0.7939 | 0.7217 | | 1.3577 | 6.0 | 900 | 0.6167 | 0.7958 | | 1.0479 | 7.0 | 1050 | 0.4737 | 0.8467 | | 1.0479 | 8.0 | 1200 | 0.3424 | 0.8867 | | 1.0479 | 9.0 | 1350 | 0.2448 | 0.9142 | | 0.5968 | 10.0 | 1500 | 0.2117 | 0.9158 | | 0.5968 | 11.0 | 1650 | 0.1589 | 0.9467 | | 0.5968 | 12.0 | 1800 | 0.1420 | 0.9492 | | 0.5968 | 13.0 | 1950 | 0.0970 | 0.9675 | | 0.3341 | 14.0 | 2100 | 0.1014 | 0.9725 | | 0.3341 | 15.0 | 2250 | 0.0678 | 0.9742 | | 0.3341 | 16.0 | 2400 | 0.0624 | 0.9825 | | 0.1802 | 17.0 | 2550 | 0.0407 | 0.9783 | | 0.1802 | 18.0 | 2700 | 0.0501 | 0.9858 | | 0.1802 | 19.0 | 2850 | 0.0341 | 0.9867 | | 0.1213 | 20.0 | 3000 | 0.0284 | 0.9883 | | 0.1213 | 21.0 | 3150 | 0.0398 | 0.9883 | | 0.1213 | 22.0 | 3300 | 0.0290 | 0.9908 | | 0.1213 | 23.0 | 3450 | 0.0211 | 0.9908 | | 0.0758 | 24.0 | 3600 | 0.0179 | 0.9908 | | 0.0758 | 25.0 | 3750 | 0.0151 | 0.9917 | | 0.0758 | 26.0 | 3900 | 0.0154 | 0.9933 | | 0.0464 | 27.0 | 4050 | 0.0216 | 0.9942 | | 0.0464 | 28.0 | 4200 | 0.0124 | 0.9942 | | 0.0464 | 29.0 | 4350 | 0.0122 | 0.9942 | | 0.0306 | 30.0 | 4500 | 0.0103 | 0.9942 | | 0.0306 | 31.0 | 4650 | 0.0094 | 0.9942 | | 0.0306 | 32.0 | 4800 | 0.0083 | 0.9942 | | 0.0306 | 33.0 | 4950 | 0.0079 | 0.9958 | | 0.0201 | 34.0 | 5100 | 0.0079 | 0.9950 | | 0.0201 | 35.0 | 5250 | 0.0069 | 0.9958 | | 0.0201 | 36.0 | 5400 | 0.0069 | 0.9950 | | 0.0205 | 37.0 | 5550 | 0.0060 | 0.9967 | | 0.0205 | 38.0 | 5700 | 0.0060 | 0.9958 | | 0.0205 | 39.0 | 5850 | 0.0061 | 0.9958 | | 0.0102 | 40.0 | 6000 | 0.0061 | 0.9958 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1