--- base_model: facebook/w2v-bert-2.0 library_name: transformers language: - uk license: "apache-2.0" tags: - automatic-speech-recognition datasets: - espnet/yodas2 metrics: - wer model-index: - name: w2v-bert-uk-v2.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_10_0 type: common_voice_10_0 config: uk split: test args: uk metrics: - name: Wer type: wer value: 0.0000 --- # w2v-bert-uk `v2.1` ## Community - **Discord**: https://bit.ly/discord-uds - Speech Recognition: https://t.me/speech_recognition_uk - Speech Synthesis: https://t.me/speech_synthesis_uk ## Overview This is a next model of https://huggingface.co/Yehor/w2v-bert-uk ## Demo Use https://huggingface.co/spaces/Yehor/w2v-bert-uk-v2.1-demo space to see how the model works with your audios. ## Usage ```python # pip install -U torch soundfile transformers import torch import soundfile as sf from transformers import AutoModelForCTC, Wav2Vec2BertProcessor # Config model_name = 'Yehor/w2v-bert-2.0-uk-v2.1' device = 'cuda:1' # or cpu sampling_rate = 16_000 # Load the model asr_model = AutoModelForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2BertProcessor.from_pretrained(model_name) paths = [ 'sample1.wav', ] # Extract audio audio_inputs = [] for path in paths: audio_input, _ = sf.read(path) audio_inputs.append(audio_input) # Transcribe the audio inputs = processor(audio_inputs, sampling_rate=sampling_rate).input_features features = torch.tensor(inputs).to(device) with torch.inference_mode(): logits = asr_model(features).logits predicted_ids = torch.argmax(logits, dim=-1) predictions = processor.batch_decode(predicted_ids) # Log results print('Predictions:') print(predictions) ```