--- base_model: aubmindlab/bert-large-arabertv02 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: arabert-emotions-classification results: [] --- # arabert-emotions-classification This model is a fine-tuned version of [aubmindlab/bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2817 - F1: 0.7006 - Roc Auc: 0.7931 - Accuracy: 0.2769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 190 | 0.3665 | 0.5604 | 0.7049 | 0.1761 | | No log | 2.0 | 380 | 0.3086 | 0.6755 | 0.7775 | 0.2564 | | 0.3831 | 3.0 | 570 | 0.2953 | 0.6848 | 0.7812 | 0.2496 | | 0.3831 | 4.0 | 760 | 0.2849 | 0.6933 | 0.7866 | 0.2615 | | 0.3831 | 5.0 | 950 | 0.2817 | 0.7006 | 0.7931 | 0.2769 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1