--- base_model: LLM-PBE/Llama3.1-8b-instruct-LLMPC-Red-Team library_name: peft license: llama3.1 tags: - trl - sft - generated_from_trainer model-index: - name: zephyr-7b-sft-qlora results: [] --- # zephyr-7b-sft-qlora This model is a fine-tuned version of [LLM-PBE/Llama3.1-8b-instruct-LLMPC-Red-Team](https://huggingface.co/LLM-PBE/Llama3.1-8b-instruct-LLMPC-Red-Team) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3835 | 1.0 | 41 | 0.3792 | | 0.3431 | 2.0 | 82 | 0.3488 | | 0.2489 | 3.0 | 123 | 0.2568 | | 0.2468 | 4.0 | 164 | 0.2538 | | 0.2454 | 5.0 | 205 | 0.2536 | ### Framework versions - PEFT 0.10.0 - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.20.0