# LongLoRA and LongAlpaca for Long-context LLMs [![Huggingface Models](https://img.shields.io/badge/Models-Huggingface%20Models-bron)](https://huggingface.co/Yukang) [![Github](https://img.shields.io/badge/Github-Repo-cyan)](https://github.com/dvlab-research/LongLoRA) [![Data](https://img.shields.io/badge/Data-LongAlpaca%2012k-light)](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) [![Paper](https://img.shields.io/badge/Paper-Arvix-blue)](https://arxiv.org/abs/2309.12307) [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-yellow.svg)](https://github.com/dvlab-research/LongLoRA/blob/main/LICENSE) [![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-orange.svg)](https://github.com/dvlab-research/LongLoRA/blob/main/DATA_LICENSE) [![Weight License](https://img.shields.io/badge/Weight%20License-CC%20By%20NC%204.0-red)](https://github.com/dvlab-research/LongLoRA/blob/main/WEIGHT_LICENSE) For detailed usage and codes, please visit the [Github project](https://github.com/dvlab-research/LongLoRA). ## TABLE OF CONTENTS 1. [News](#news) 2. [Examples](#examples) 3. [Highlights](#highlights) 4. [How to contribute](#how-to-contribute) 5. [Requirements](#usage-requirements) 6. [Installation and quick guide](#installation-and-quick-guide) 7. [LongAlpaca Data](#longalpaca-data) 8. [Models](#models) 9. [Training](#training) 10. [Evaluation](#evaluation) 11. [Demo](#demo) 12. [Data Generation via Pdf2Text](#data-generation-via-pdf2text) 13. [Citation](#citation) 14. [Acknowledgement](#acknowledgement) 15. [License](#license) ## News - [x] [2023.10.8] **We release the long instruction-following dataset**, [LongAlpaca-12k](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) and **the corresponding models**, [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B), and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B). - (*The previous sft models*, [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) and [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), *have been depreciated*.) - [x] [2023.10.3] We add support GPTNeoX models. Please refer to this [PR](https://github.com/dvlab-research/LongLoRA/pull/32) for usage. Thanks for @naubull2 for this contribution. - [x] [2023.9.22] We release all our fine-tuned [models](https://huggingface.co/Yukang), including **70B-32k models**, [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k), [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft). Welcome to check them out! - [x] [2023.9.22] We release [Paper](http://arxiv.org/abs/2309.12307) and this GitHub repo, including training and evaluation code. **LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models [[Paper](http://arxiv.org/abs/2309.12307)]**
[Yukang Chen](https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en), [Shengju Qian](https://scholar.google.com/citations?user=QNnWmasAAAAJ), [Haotian Tang](https://scholar.google.com/citations?user=WxL13BAAAAAJ&hl), [Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ&hl=zh-CN), [Zhijian Liu](https://scholar.google.com/citations?user=3coYSTUAAAAJ&hl=en), [Song Han](https://scholar.google.com/citations?user=E0iCaa4AAAAJ&hl=zh-CN), [Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ&hl=en)
## Highlights 1. In LongLoRA approach, The proposed shifted short attention is easy to implement, compatible with Flash-Attention, and is not required during inference. 2. We released all our models, including models from 7B to 70B, context length from 8k to 100k, including [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft), [LLaMA2-LongLoRA-13B-64k](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k), and [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k). 3. We built up a long-context instruction-following dataset, [LongAlpaca-12k](#longalpaca-data). We released the corresponding [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B) and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B) models. To our best knowledge, this is the first open-sourced long-context 70B model. ## How to Contribute - Make sure to have git installed. - Create your own [fork](https://github.com/dvlab-research/LongLoRA/fork) of the project. - Clone the repository on your local machine, using git clone and pasting the url of this project. - Read both the `Requirements` and `Installation and Quick Guide` sections below. - Commit and push your changes. - Make a pull request when finished modifying the project. ## Usage Requirements To download and use the [pre-trained weights](#pre-trained-weights) you will need: 1. Hugging Face (HF) account with valid email. Note, the email used for HF must alse be used for the license agreement. 2. Accept the Meta [license and acceptable use policy](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) ## Installation and Quick Guide To install and run the application: 1. [Fork this repo](https://github.com/dvlab-research/LongLoRA/fork) on github 2. Clone the repository on your local machine, using git clone and pasting the url of this project. 3. Run the following code: ``` pip install -r requirements.txt pip install flash-attn --no-build-isolation ``` 4. Use either a [Released model](#released-models) or [Fine tune](#fine-tuning) a model to fit your preferences. 5. Test your model by chat. 6. Deploy your own demo. ## LongAlpaca Data LongAlpaca-12k contains 9k long QA data that we collected and 3k short QA sampled from the original [Alpaca data](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json). This is to avoid the case that the model might degrade at short instruction following. The data we collect contains various types and amounts as the following figure. | Data | Short QA | Long QA | Total | Download | |:---------------|----------|----------|----------|----------| | LongAlpaca-12k | 3k | 9k | 12k | [Link](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) | Following the original Alpaca format, our Long QA data uses the following prompts for fine-tuning: - `instruction`: `str`, describes the task the model should perform. For example, to answer a question after reading a book section or paper. We vary the contents and questions to make instructions diverse. - `output`: `str`, the answer to the instruction. We did not use the `input` format in the Alpaca format for simplicity. ## Models ### Models with supervised fine-tuning | Model | Size | Context | Train | Link | |:---------------|------|---------|---------|-----------------------------------------------------------------------------------------------------------------------| | LongAlpaca-7B | 7B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-7B) | | LongAlpaca-13B | 13B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-13B) | | LongAlpaca-70B | 70B | 32768 | LoRA+ | [Model](https://huggingface.co/Yukang/LongAlpaca-70B) [(LoRA-weight)](https://huggingface.co/Yukang/LongAlpaca-70B-lora) | ### Models with context extension via fully fine-tuning | Model | Size | Context | Train | Link | |:----------------------------|------|---------|-------|-------------------------------------------------------------------| | Llama-2-7b-longlora-8k-ft | 7B | 8192 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k-ft) | | Llama-2-7b-longlora-16k-ft | 7B | 16384 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k-ft) | | Llama-2-7b-longlora-32k-ft | 7B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k-ft) | | Llama-2-7b-longlora-100k-ft | 7B | 100000 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft) | | Llama-2-13b-longlora-8k-ft | 13B | 8192 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k-ft) | | Llama-2-13b-longlora-16k-ft | 13B | 16384 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft) | | Llama-2-13b-longlora-32k-ft | 13B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k-ft) | ### Models with context extension via improved LoRA fine-tuning | Model | Size | Context | Train | Link | |:----------------------------|------|---------|-------|---------------------------------------------------------------------| | Llama-2-7b-longlora-8k | 7B | 8192 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k) | | Llama-2-7b-longlora-16k | 7B | 16384 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k) | | Llama-2-7b-longlora-32k | 7B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k) | | Llama-2-13b-longlora-8k | 13B | 8192 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k) | | Llama-2-13b-longlora-16k | 13B | 16384 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k) | | Llama-2-13b-longlora-32k | 13B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k) | | Llama-2-13b-longlora-64k | 13B | 65536 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k) | | Llama-2-70b-longlora-32k | 70B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k) | | Llama-2-70b-chat-longlora-32k | 70B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k) | ## Training ### Pre-trained weights We use LLaMA2 models as the pre-trained weights and fine-tune them to long context window sizes. Download based on your choices. | Pre-trained weights | |:-------------------------------------------------------------------------------------| | [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) | |[Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) | | [Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) | | [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | | [Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) | | [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | This project also supports GPTNeoX models as the base model architecture. Some candidate pre-trained weights may include [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b), [Polyglot-ko-12.8B](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) and other variants. ### Fine-tuning ``` torchrun --nproc_per_node=8 fine-tune.py \ --model_name_or_path path_to/Llama-2-7b-hf \ --bf16 True \ --output_dir path_to_saving_checkpoints \ --cache_dir path_to_cache \ --model_max_length 8192 \ --use_flash_attn True \ --low_rank_training False \ --num_train_epochs 1 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 2 \ --gradient_accumulation_steps 8 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 1000 \ --save_total_limit 2 \ --learning_rate 2e-5 \ --weight_decay 0.0 \ --warmup_steps 20 \ --lr_scheduler_type "constant_with_warmup" \ --logging_steps 1 \ --deepspeed "ds_configs/stage2.json" \ --tf32 True \ --max_steps 1000 ``` - Please remember to change `path_to/Llama-2-7b-hf`, `path_to_saving_checkpoints`, `path_to_cache` to your own directory. - Note that you can change `model_max_length` to other values. - You could change `ds_configs/stage2.json` to `ds_configs/stage3.json` if you want. - Please set `use_flash_attn` as `False` if you use V100 machines or do not install flash attention. - You can set `low_rank_training` as `False` if you want to use fully fine-tuning. It will cost more GPU memory and slower, but the performance will be a bit better. - When training is finished, to get the full model weight: ``` cd path_to_saving_checkpoints && python zero_to_fp32.py . pytorch_model.bin ``` ### Supervised Fine-tuning ``` torchrun --nproc_per_node=8 supervised-fine-tune.py \ --model_name_or_path path_to_Llama2_chat_models \ --bf16 True \ --output_dir path_to_saving_checkpoints \ --model_max_length 32768 \ --use_flash_attn True \ --data_path LongAlpaca-12k.json \ --low_rank_training True \ --num_train_epochs 3 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 2 \ --gradient_accumulation_steps 1 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 1000 \ --save_total_limit 2 \ --learning_rate 2e-5 \ --weight_decay 0.0 \ --warmup_steps 20 \ --lr_scheduler_type "constant_with_warmup" \ --logging_steps 1 \ --deepspeed "ds_configs/stage2.json" \ --tf32 True ``` - There is no need to make supervised fine-tuning upon the fine-tuned context extended models. It is all right to directly use base model as Llama2-chat models, as the amount of long instruction following data is enough for SFT. - Our long instruction following data can be found in [LongAlpaca-12k.json](https://huggingface.co/datasets/Yukang/LongAlpaca-12k). ### Get trainable weights in low-rank training In low-rank training, we set embedding and normalization layers as trainable. Please use the following line to extract the trainable weights `trainable_params.bin` from `pytorch_model.bin` ``` python3 get_trainable_weights.py --checkpoint_path path_to_saving_checkpoints --trainable_params "embed,norm" ``` ### Merge LoRA Weight Merge the LoRA weights of `pytorch_model.bin` and trainable parameters `trainable_params.bin`, save the resulting model into your desired path in the Hugging Face format: ``` python3 merge_lora_weights_and_save_hf_model.py \ --base_model path_to/Llama-2-7b-hf \ --peft_model path_to_saving_checkpoints \ --context_size 8192 \ --save_path path_to_saving_merged_model ``` For example, ``` python3 merge_lora_weights_and_save_hf_model.py \ --base_model /dataset/pretrained-models/Llama-2-7b-hf \ --peft_model /dataset/yukangchen/hf_models/lora-models/Llama-2-7b-longlora-8k \ --context_size 8192 \ --save_path /dataset/yukangchen/models/Llama-2-7b-longlora-8k-merged ``` ## Evaluation ### Perplexity Validation To evaluate a model that is trained in the low-rank setting, please set both `base_model` and `peft_model`. `base_model` is the pre-trained weight. `peft_model` is the path to the saved checkpoint, which should contain `trainable_params.bin`, `adapter_model.bin` and `adapter_config.json`. For example, ``` python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to/Llama-2-7b-hf --peft_model path_to_saving_checkpoints --data_path pg19/test.bin ``` To evaluate a model that is fully fine-tuned, you only need to set `base_model` as the path to the saved checkpoint, which should contain `pytorch_model.bin` and `config.json`. `peft_model` should be ignored. ``` python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to_saving_checkpoints --data_path pg19/test.bin ``` - Note that `--seq_len` is to set the sequence length for evaluation. `--context_size` is to set the context length of the model during fine-tuning. `--seq_len` should not be larger than `--context_size`. - We have already tokenized the validation and test splits of PG19 and proof-pile dataset into `pg19/validation.bin`, `pg19/test.bin`, and `proof-pile/test_sampled_data.bin`, with the tokenizer of LLaMA. `proof-pile/test_sampled_data.bin` contains 128 documents that are randomly sampled from the total proof-pile test split. For each document, it has at least 32768 tokens. We also release the sampled ids in [proof-pile/test_sampled_ids.bin](https://drive.google.com/file/d/1cnzWODLRQYAd7HeugzLCIhaqzaLZv7J5/view?usp=share_link). You can download them from the links below. | Dataset | Split | Link | |:-----------|------------|--------------------------------------------------------------------------------------------------------------| | PG19 | validation | [pg19/validation.bin](https://drive.google.com/file/d/1rbJvb0qRIf2mQoN2ON7S93TbTzMnlrN6/view?usp=share_link) | | PG19 | test | [pg19/test.bin](https://drive.google.com/file/d/1QANDMdctpacPAYgS04adDXqByGEq-Ret/view?usp=share_link) | | Proof-pile | test | [proof-pile/test_sampled_data.bin](https://drive.google.com/file/d/1bUI5lPDvrqzY_XXJJ2sSuvZx0Y9AZClE/view?usp=share_link) | ### Passkey Retrieval We provide a manner to test the passkey retrieval accuracy. For example, ``` python3 passkey_retrivial.py \ --context_size 32768 \ --base_model path_to/Llama-2-7b-longlora-32k \ --max_tokens 32768 \ --interval 1000 ``` - Note that the `context_size` is the context length during fine-tuning. - `max_tokens` is maximum length for the document in passkey retrieval evaluation. - `interval` is the interval during the document length increasing. It is a rough number because the document increases by sentences. ## Demo ### Local Inference To chat with [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) or [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), you need to run `merge_lora_weights_and_save_hf_model.py` first, and then: ``` python3 inference.py \ --base_model path_to_model \ --question $question \ --context_size $context_length \ --max_gen_len $max_gen_len \ --flash_attn True \ --material $material_content \ --material_type $material_type \ --material_title $material_title ``` To ask a question related to a book: ``` python3 inference.py \ --base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \ --question "Why doesn't Professor Snape seem to like Harry?" \ --context_size 32768 \ --max_gen_len 512 \ --flash_attn True \ --material "materials/Harry Potter and the Philosophers Stone_section2.txt" \ --material_type "book" \ --material_title "Harry Potter and the Philosophers Stone" ``` Note that you can ignore `material_type` or `material_title`. To ask a question related to a paper: ``` python3 inference.py \ --base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \ --question "What are the main contributions and novelties of this work?" \ --context_size 32768 \ --max_gen_len 512 \ --flash_attn True \ --material "materials/paper1.txt" \ --material_type "paper" ``` ### Online Demo To deploy your own demo run ``` python3 demo.py \ --base_model path_to_model \ --context_size $context_size \ --max_gen_len $max_gen_len \ --flash_attn True ``` Example ``` python3 demo.py \ --base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \ --context_size 32768 \ --max_gen_len 512 \ --flash_attn True ``` - Note that `flash_attn=True` will make the generation slow but save much GPU memory. ## Data Generation via Pdf2text During our dataset collection, we convert paper and books from pdf to text. The conversion quality has a large influence on the final model quality. We think that this step is non-trivial. We release the tool for the pdf2txt conversion, in the folder `pdf2txt`. It is built upon `pdf2image`, `easyocr`, `ditod` and `detectron2`. Please refer to the [README.md](pdf2txt/README.md) in `pdf2txt` for more details. ## Citation If you find this project useful in your research, please consider citing: ``` @article{longlora, title={LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models}, author={Yukang Chen and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia}, journal={arXiv:2309.12307}, year={2023} } ``` ``` @misc{long-alpaca, author = {Yukang Chen and Shaozuo Yu and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia}, title = {Long Alpaca: Long-context Instruction-following models}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/dvlab-research/LongLoRA}}, } ``` ## Acknowledgement - This work is built upon the [LLaMA2](https://ai.meta.com/llama) as the pre-trained models. - This work can also be built upon the [GPTNeoX-HF](https://huggingface.co/docs/transformers/model_doc/gpt_neox) which is based upon [EleutherAI/GPTNeoX](https://github.com/EleutherAI/gpt-neox) as the pre-trained model architecture. - This work is based on [DeepSpeed](https://github.com/microsoft/DeepSpeed), [peft](https://github.com/huggingface/peft), and [Flash-Attention2](https://github.com/Dao-AILab/flash-attention) for acceleration. - Some evaluation code is modified upon [Landmark Attention](https://github.com/epfml/landmark-attention). - We use [LongChat](https://github.com/DachengLi1/LongChat) for the retrieval evaluation. ## License - LongLoRA is licensed under the Apache License 2.0. This means that it requires the preservation of copyright and license notices. - Data and weights are under CC-BY-NC 4.0 License. They are licensed for research use only, and allowed only non-commercial. Models trained using the dataset should not be used outside of research purposes. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yukang__LongAlpaca-7B) | Metric | Value | |-----------------------|---------------------------| | Avg. | 34.98 | | ARC (25-shot) | 42.66 | | HellaSwag (10-shot) | 65.89 | | MMLU (5-shot) | 27.28 | | TruthfulQA (0-shot) | 40.16 | | Winogrande (5-shot) | 60.14 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 8.69 |