--- library_name: transformers language: - zh license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper_largev3_motor_zh results: [] --- # Whisper_largev3_motor_zh This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1474 - Wer: 687.0393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:| | 0.1996 | 0.0905 | 300 | 0.2141 | 335.3766 | | 0.2683 | 0.1809 | 600 | 0.2006 | 354.0665 | | 0.178 | 0.2714 | 900 | 0.1823 | 371.9752 | | 0.0837 | 0.3619 | 1200 | 0.1587 | 1194.9519 | | 0.0985 | 0.4524 | 1500 | 0.1474 | 687.0393 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3