--- license: mit base_model: shi-labs/nat-small-in1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: msi results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6625388813897529 --- # msi This model is a fine-tuned version of [shi-labs/nat-small-in1k-224](https://huggingface.co/shi-labs/nat-small-in1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6797 - Accuracy: 0.6625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4035 | 1.0 | 1858 | 0.7665 | 0.6671 | | 0.2976 | 2.0 | 3717 | 1.0836 | 0.6372 | | 0.2552 | 3.0 | 5575 | 1.1942 | 0.6377 | | 0.219 | 4.0 | 7434 | 1.3987 | 0.6419 | | 0.1863 | 5.0 | 9292 | 1.5862 | 0.6248 | | 0.1946 | 6.0 | 11151 | 1.4975 | 0.6848 | | 0.1679 | 7.0 | 13009 | 1.6209 | 0.6518 | | 0.1531 | 8.0 | 14868 | 1.6400 | 0.6599 | | 0.15 | 9.0 | 16726 | 1.6733 | 0.6702 | | 0.1377 | 10.0 | 18580 | 1.6797 | 0.6625 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0