--- language: - de - en - es - fr - it - nl - pl - pt - ru - zh library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:10K - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) - **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: JinaBertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("aari1995/gbert-large-2-cls-pawsx-nli-sts") # Run inference sentences = [ 'Zwei Frauen laufen.', 'Frauen laufen.', 'Die Frau prüft die Augen des Mannes.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev-1024` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8418 | | **spearman_cosine** | **0.8453** | | pearson_manhattan | 0.8419 | | spearman_manhattan | 0.845 | | pearson_euclidean | 0.8423 | | spearman_euclidean | 0.8453 | | pearson_dot | 0.8417 | | spearman_dot | 0.8451 | | pearson_max | 0.8423 | | spearman_max | 0.8453 | #### Semantic Similarity * Dataset: `sts-dev-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8418 | | **spearman_cosine** | **0.8454** | | pearson_manhattan | 0.8419 | | spearman_manhattan | 0.8448 | | pearson_euclidean | 0.8423 | | spearman_euclidean | 0.8452 | | pearson_dot | 0.8418 | | spearman_dot | 0.8447 | | pearson_max | 0.8423 | | spearman_max | 0.8454 | #### Semantic Similarity * Dataset: `sts-dev-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8395 | | **spearman_cosine** | **0.8438** | | pearson_manhattan | 0.842 | | spearman_manhattan | 0.8447 | | pearson_euclidean | 0.8423 | | spearman_euclidean | 0.8449 | | pearson_dot | 0.8358 | | spearman_dot | 0.838 | | pearson_max | 0.8423 | | spearman_max | 0.8449 | #### Semantic Similarity * Dataset: `sts-dev-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8339 | | **spearman_cosine** | **0.8392** | | pearson_manhattan | 0.838 | | spearman_manhattan | 0.8399 | | pearson_euclidean | 0.8389 | | spearman_euclidean | 0.8405 | | pearson_dot | 0.8231 | | spearman_dot | 0.8243 | | pearson_max | 0.8389 | | spearman_max | 0.8405 | #### Semantic Similarity * Dataset: `sts-dev-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8254 | | **spearman_cosine** | **0.8336** | | pearson_manhattan | 0.8342 | | spearman_manhattan | 0.8344 | | pearson_euclidean | 0.8355 | | spearman_euclidean | 0.8359 | | pearson_dot | 0.8035 | | spearman_dot | 0.805 | | pearson_max | 0.8355 | | spearman_max | 0.8359 | #### Semantic Similarity * Dataset: `sts-dev-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8151 | | **spearman_cosine** | **0.8266** | | pearson_manhattan | 0.8242 | | spearman_manhattan | 0.8239 | | pearson_euclidean | 0.8275 | | spearman_euclidean | 0.8271 | | pearson_dot | 0.7774 | | spearman_dot | 0.779 | | pearson_max | 0.8275 | | spearman_max | 0.8271 | #### Semantic Similarity * Dataset: `sts-test-1024` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8131 | | **spearman_cosine** | **0.8189** | | pearson_manhattan | 0.8209 | | spearman_manhattan | 0.8195 | | pearson_euclidean | 0.8203 | | spearman_euclidean | 0.8189 | | pearson_dot | 0.8128 | | spearman_dot | 0.8186 | | pearson_max | 0.8209 | | spearman_max | 0.8195 | #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8122 | | **spearman_cosine** | **0.8183** | | pearson_manhattan | 0.8206 | | spearman_manhattan | 0.819 | | pearson_euclidean | 0.8197 | | spearman_euclidean | 0.8183 | | pearson_dot | 0.8107 | | spearman_dot | 0.8149 | | pearson_max | 0.8206 | | spearman_max | 0.819 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8096 | | **spearman_cosine** | **0.8163** | | pearson_manhattan | 0.818 | | spearman_manhattan | 0.8165 | | pearson_euclidean | 0.8174 | | spearman_euclidean | 0.8159 | | pearson_dot | 0.8059 | | spearman_dot | 0.8089 | | pearson_max | 0.818 | | spearman_max | 0.8165 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.8071 | | **spearman_cosine** | **0.815** | | pearson_manhattan | 0.8184 | | spearman_manhattan | 0.8167 | | pearson_euclidean | 0.8177 | | spearman_euclidean | 0.8159 | | pearson_dot | 0.7955 | | spearman_dot | 0.7956 | | pearson_max | 0.8184 | | spearman_max | 0.8167 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7974 | | **spearman_cosine** | **0.8093** | | pearson_manhattan | 0.8126 | | spearman_manhattan | 0.8121 | | pearson_euclidean | 0.8119 | | spearman_euclidean | 0.8112 | | pearson_dot | 0.774 | | spearman_dot | 0.7701 | | pearson_max | 0.8126 | | spearman_max | 0.8121 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7873 | | **spearman_cosine** | **0.8025** | | pearson_manhattan | 0.8048 | | spearman_manhattan | 0.8032 | | pearson_euclidean | 0.806 | | spearman_euclidean | 0.8042 | | pearson_dot | 0.7479 | | spearman_dot | 0.7386 | | pearson_max | 0.806 | | spearman_max | 0.8042 | ## Training Details ### Training Dataset #### PhilipMay/stsb_multi_mt * Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c) * Size: 22,996 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------| | schütze wegen mordes an schwarzem us-jugendlichen angeklagt | gedanken zu den rassenbeziehungen unter einem schwarzen präsidenten | 0.1599999964237213 | | fußballspieler kicken einen fußball in das tor. | Ein Fußballspieler schießt ein Tor. | 0.7599999904632568 | | obama lockert abschiebungsregeln für junge einwanderer | usa lockert abschiebebestimmungen für jugendliche: napolitano | 0.800000011920929 | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "CosineSimilarityLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### PhilipMay/stsb_multi_mt * Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c) * Size: 1,500 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------| | Ein Mann mit einem Schutzhelm tanzt. | Ein Mann mit einem Schutzhelm tanzt. | 1.0 | | Ein kleines Kind reitet auf einem Pferd. | Ein Kind reitet auf einem Pferd. | 0.949999988079071 | | Ein Mann verfüttert eine Maus an eine Schlange. | Der Mann füttert die Schlange mit einer Maus. | 1.0 | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "CosineSimilarityLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 16 - `learning_rate`: 5e-06 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `bf16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-06 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | sts-dev-1024_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-1024_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:----:|:-------------:|:------:|:----------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:-----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | 0.0174 | 100 | 0.2958 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0348 | 200 | 0.2914 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0522 | 300 | 0.2691 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0696 | 400 | 0.253 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0870 | 500 | 0.2458 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1044 | 600 | 0.2594 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1218 | 700 | 0.2339 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1392 | 800 | 0.2245 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1565 | 900 | 0.2122 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1739 | 1000 | 0.2369 | 0.2394 | 0.8402 | 0.8277 | 0.8352 | 0.8393 | 0.8164 | 0.8404 | - | - | - | - | - | - | | 0.1913 | 1100 | 0.2308 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2087 | 1200 | 0.2292 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2261 | 1300 | 0.2232 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2435 | 1400 | 0.2001 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2609 | 1500 | 0.2139 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2783 | 1600 | 0.1906 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2957 | 1700 | 0.1895 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3131 | 1800 | 0.2011 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3305 | 1900 | 0.1723 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3479 | 2000 | 0.1886 | 0.2340 | 0.8448 | 0.8321 | 0.8385 | 0.8435 | 0.8233 | 0.8449 | - | - | - | - | - | - | | 0.3653 | 2100 | 0.1719 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3827 | 2200 | 0.1879 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4001 | 2300 | 0.187 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4175 | 2400 | 0.1487 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4349 | 2500 | 0.1752 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4523 | 2600 | 0.1475 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4696 | 2700 | 0.1695 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4870 | 2800 | 0.1615 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5044 | 2900 | 0.1558 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5218 | 3000 | 0.1713 | 0.2357 | 0.8457 | 0.8344 | 0.8406 | 0.8447 | 0.8266 | 0.8461 | - | - | - | - | - | - | | 0.5392 | 3100 | 0.1556 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5566 | 3200 | 0.1743 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5740 | 3300 | 0.1426 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5914 | 3400 | 0.1519 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6088 | 3500 | 0.1763 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6262 | 3600 | 0.1456 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6436 | 3700 | 0.1649 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6610 | 3800 | 0.1427 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6784 | 3900 | 0.1284 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6958 | 4000 | 0.1533 | 0.2344 | 0.8417 | 0.8291 | 0.8357 | 0.8402 | 0.8225 | 0.8421 | - | - | - | - | - | - | | 0.7132 | 4100 | 0.1397 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7306 | 4200 | 0.1505 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7480 | 4300 | 0.1355 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7654 | 4400 | 0.1275 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7827 | 4500 | 0.1599 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8001 | 4600 | 0.1493 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8175 | 4700 | 0.1497 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8349 | 4800 | 0.1492 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8523 | 4900 | 0.1378 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8697 | 5000 | 0.1391 | 0.2362 | 0.8453 | 0.8336 | 0.8392 | 0.8438 | 0.8266 | 0.8454 | - | - | - | - | - | - | | 0.8871 | 5100 | 0.1622 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9045 | 5200 | 0.1456 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9219 | 5300 | 0.1367 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9393 | 5400 | 0.1243 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9567 | 5500 | 0.1389 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9741 | 5600 | 0.1338 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9915 | 5700 | 0.1146 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 1.0 | 5749 | - | - | - | - | - | - | - | - | 0.8189 | 0.8093 | 0.8150 | 0.8163 | 0.8025 | 0.8183 | ### Framework Versions - Python: 3.9.16 - Sentence Transformers: 3.0.0 - Transformers: 4.42.0.dev0 - PyTorch: 2.2.2+cu118 - Accelerate: 0.31.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```