{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe373b0ad40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704085850819570887, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACNreL5vk7E+y5pgPRCwn75zuZS9oBm4uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+zkj5bhWKMAWyUTT4BjAF0lEdAnWwxyXD3unV9lChoBkdAcB5U4rBj4GgHTTUBaAhHQJ1unag26091fZQoaAZHQGSNn3+MqBpoB03oA2gIR0CddvmJm/WUdX2UKGgGR0BvOQoPTXrdaAdNCAFoCEdAnXmjfJmuknV9lChoBkdAcnctZmqYJGgHTQYBaAhHQJ17Rm03OwB1fZQoaAZHQG+RE0SAYpFoB00hAWgIR0CdfPDhcZ+AdX2UKGgGR0BtrnN9ph4MaAdNHwFoCEdAnX6egDifhHV9lChoBkdAcIoyLQ5WBGgHTQYBaAhHQJ2BZqJuVHF1fZQoaAZHQF1aRmbsniNoB03oA2gIR0CdiK0fYBeYdX2UKGgGR0Bybd9kSVW0aAdL7mgIR0CdihLoOhCddX2UKGgGR0BxVzPv8ZUDaAdL8GgIR0Cdi4cAiml7dX2UKGgGR0BvyfSSeRPoaAdNfQFoCEdAnY3SrT6SDHV9lChoBkdAcchL9uP3jGgHTRkBaAhHQJ2QxyYG+sZ1fZQoaAZHQG8XUG/vfCRoB00BAWgIR0Cdkj8gZCOWdX2UKGgGR0BwXgv6CUX6aAdNNAFoCEdAnZQsYEW69XV9lChoBkdAbMZtCzC1qmgHTcIDaAhHQJ2bVyJbdJt1fZQoaAZHQHFyOKXOW0JoB00HAWgIR0CdnWvbXYlIdX2UKGgGR0Bwf5UuL740aAdNEQFoCEdAnaEPNeMQ3HV9lChoBkdAcWN9ECvHLmgHS/FoCEdAnaL2T5ftyHV9lChoBkdAcRXnjhky12gHS+1oCEdAnaTWiQDFInV9lChoBkdAcTTyT6i0wGgHTTcBaAhHQJ2ox1hb4ah1fZQoaAZHQDdH8baRISVoB0utaAhHQJ2qE/FBIFx1fZQoaAZHQEPRKZDzAetoB0vCaAhHQJ2rgYixFAp1fZQoaAZHQHA+L17IDHRoB0vtaAhHQJ2tV0Qsf7t1fZQoaAZHQHDCG5c1O0toB0v+aAhHQJ2vOxs2vSt1fZQoaAZHQHJJkTDfm9xoB00qAWgIR0Cdsh7+DOC5dX2UKGgGR0BxFcZsKsuGaAdNGQFoCEdAnbPHFYMfBHV9lChoBkdAcNKJ0W/JvGgHTRMBaAhHQJ21bIS13MZ1fZQoaAZHQEephLoOhCdoB0upaAhHQJ22a2VmjCZ1fZQoaAZHQHCFKxHG0eFoB00ZAWgIR0CduUS1maphdX2UKGgGR0BtlCgsbvPUaAdL+mgIR0Cdurx7zCk5dX2UKGgGR0Bx0djtoi9qaAdNCgFoCEdAnbxLTx5LRXV9lChoBkdAczq5n13+uWgHTQUBaAhHQJ296gh8pkR1fZQoaAZHQG/EDlYEGJNoB00FAWgIR0CdwI9jwx33dX2UKGgGR0BwZWIcinpCaAdNKQFoCEdAncJawdKdx3V9lChoBkdAcruBWPtD2WgHTSIBaAhHQJ3EHlJYkmh1fZQoaAZHQHDd2sijcmBoB00FAWgIR0Cdxb1aW5YpdX2UKGgGR0BxQ84rBj4IaAdNAQFoCEdAnch7BO58SnV9lChoBkdAcAYb5/LDAWgHTSEBaAhHQJ3KQaMrEtN1fZQoaAZHQEiUrwOOKfpoB0unaAhHQJ3LPvYvnKZ1fZQoaAZHQHCjc+FDfFdoB00QAWgIR0CdzOUo8ZDRdX2UKGgGR0Bv8l0A93bFaAdNAQFoCEdAnc+QTZg5R3V9lChoBkdAYocxu89Oh2gHTegDaAhHQJ3XITakAPx1fZQoaAZHQHIH9+so2GZoB00OAWgIR0Cd2TjkdV/+dX2UKGgGR0BxicngHeJpaAdL+GgIR0Cd2yCK77KrdX2UKGgGR0Bw2/UWl/H6aAdNAAFoCEdAndz0qpcX33V9lChoBkdAcEW1cdHUdGgHTRwBaAhHQJ3gt8hLXcx1fZQoaAZHQEI6WjXWe6JoB0usaAhHQJ3iCjfvWpZ1fZQoaAZHQHDOxmkFfRhoB00xAWgIR0Cd5H9pRGc4dX2UKGgGR0Bu8/aJyhi9aAdL6GgIR0Cd5j4/u9eydX2UKGgGR0BwwpLdvbXZaAdNEQFoCEdAnen3h86V+3V9lChoBkdARdWkN4JNTWgHS85oCEdAnes9CJGe+XV9lChoBkdAU8x3np0OmWgHS75oCEdAnexiuQp4KXV9lChoBkdAQQwsI3R5T2gHS7poCEdAne15vxYq5XV9lChoBkdAchf6CUX532gHTQIBaAhHQJ3vC4FzMid1fZQoaAZHQC18bedkJ8hoB0uwaAhHQJ3xOAUcn3N1fZQoaAZHQG2iLVvuPWBoB0vhaAhHQJ3yhXlr/Kh1fZQoaAZHQHIweK4x1xNoB03sAmgIR0Cd+CSB9TgmdX2UKGgGR0BQrRwqAjIJaAdLsGgIR0Cd+SmUW2w3dX2UKGgGR0BHCKy4Wk8BaAdLomgIR0Cd+hVWjoIOdX2UKGgGR0Bv5fZPEbYLaAdNFwFoCEdAnfu4MF2V3XV9lChoBkdAZQsYJmdy1mgHTegDaAhHQJ4CzFCLMs91fZQoaAZHQG6ubfpD/l1oB00mAWgIR0CeBIE87p3YdX2UKGgGR0BL4gfuCwr2aAdLtmgIR0CeBtxHXmNjdX2UKGgGR0ByEuOearmyaAdL/WgIR0CeCGiblRxcdX2UKGgGR0BvsvluFYdRaAdN1AJoCEdAng4hsyi22HV9lChoBkdAb7bUuL74z2gHTQQBaAhHQJ4PsBcRlH11fZQoaAZHQHD2BaxHG0hoB0vraAhHQJ4RGBg/keZ1fZQoaAZHQG+r0rbxmTVoB00PAWgIR0CeEwsU7CBPdX2UKGgGR0BmDUkv9LpSaAdN6ANoCEdAnhzK/dqL0nV9lChoBkdAcqTZ6Uqx1WgHTQ8BaAhHQJ4gc5T6zmh1fZQoaAZHQHB3HVCojwBoB0vuaAhHQJ4iYcebNKR1fZQoaAZHQHGJP3ztkWhoB0v7aAhHQJ4kcipvP1N1fZQoaAZHQHELe2mYSg5oB006AWgIR0CeJr5YYBNmdX2UKGgGR0ByXrWuoxYaaAdNFQFoCEdAnimQEhaC+XV9lChoBkdAcUPB5ooNNWgHTSoBaAhHQJ4rVDArQPZ1fZQoaAZHQHAE0I1LrX1oB00zAWgIR0CeLSx/d69kdX2UKGgGR8A15Sro4dZJaAdLumgIR0CeLk5PuXu3dX2UKGgGR8A32ahHskY5aAdLwmgIR0CeMLGvOhTPdX2UKGgGR0Byo981Gb1AaAdNJgFoCEdAnjKGPcSGrXV9lChoBkdAbUbCLuQZGmgHTQABaAhHQJ40Dd30PH11fZQoaAZHQHHUZML4N7VoB00KAWgIR0CeNbM0P6KtdX2UKGgGR0BxTfj/+85CaAdNBQFoCEdAnjh0iY9gW3V9lChoBkdAUFDI1cdHUmgHS9hoCEdAnjnLeVLSNXV9lChoBkdAcFMd+G47R2gHS/9oCEdAnjtD+irT6XV9lChoBkdAcvVm6XjU/mgHTQwBaAhHQJ485tVJcxF1fZQoaAZHQEbE+RoysS1oB0upaAhHQJ4/H5uZThp1fZQoaAZHQG7GEcjqv/1oB0v1aAhHQJ5Ao94eLeh1fZQoaAZHQHJlN/4IrvtoB020AmgIR0CeRMhwEQoTdX2UKGgGR0BTz5ooNNJwaAdL0mgIR0CeRz1TBInSdX2UKGgGR0BvZcojOcDsaAdNCAFoCEdAnkjUY4yXU3V9lChoBkdAOqYN/e+EiGgHS79oCEdAnknum3vx6XV9lChoBkdAczoDm8ujAWgHTVABaAhHQJ5L+Z3LV4J1fZQoaAZHQEodrSE12q1oB0vBaAhHQJ5Om+PBBRh1fZQoaAZHQHFPQFgUlAxoB00OAWgIR0CeULCojv/jdX2UKGgGR0BtVFu5z5oHaAdNDgFoCEdAnlLK9TP0I3V9lChoBkdAcQRf3N9piGgHTRUBaAhHQJ5U7M5fdAR1fZQoaAZHQHM4Z1eSjg1oB02KAWgIR0CeWYRvFWGRdX2UKGgGR0ByKhIlMRHxaAdNIQFoCEdAnlvCOvMbFXV9lChoBkdAccWhjOLR8mgHTSwBaAhHQJ5eKHZbpvB1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}