--- license: apache-2.0 language: - en pipeline_tag: image-classification --- # Skin Disease Classification Model This repository hosts a machine learning model for **skin disease classification**, designed to predict skin conditions from input images. The model is trained on [dermnet] dataset and provides a simple yet effective way to classify skin diseases. ## Model Overview - **Model Architecture**: [ResNet34] - **Framework**: PyTorch - **Input**: RGB image of size [224x224]. - **Output**: Predicted label for skin disease. - **Training Dataset**: [Dermnet]. --- ## Usage Instructions ### Loading the Model You can load this model using the `torch` library in Python: ```python import torch # Load the model model_path = "path/to/skin_model2.pth" model = torch.load(model_path, map_location=torch.device('cpu')) model.eval() # Example usage from PIL import Image from torchvision import transforms # Preprocess input image transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) image = Image.open("example_input.jpg") input_tensor = transform(image).unsqueeze(0) # Make a prediction with torch.no_grad(): prediction = model(input_tensor) predicted_class = prediction.argmax(dim=1).item() print(f"Predicted Class: {predicted_class}") ``` ### Using directly from hugging face pip install huggingface_hub from huggingface_hub import hf_hub_download import torch # Download the model from Hugging Face Hub model_path = hf_hub_download(repo_id="/", filename="skin_model2.pth") model = torch.load(model_path, map_location=torch.device('cpu')) model.eval() # Citation ### If you use this model in your work, please cite it as follows: @misc{abdlh2024skindisease, title={Skin Disease Classification Model}, author={Muhammad Abdullah }, year={2024}, url={https://huggingface.co//}, }