--- base_model: eslamxm/MBart-finetuned-ur-xlsum tags: - generated_from_trainer model-index: - name: 1m-model results: [] --- # 1m-model This model is a fine-tuned version of [eslamxm/MBart-finetuned-ur-xlsum](https://huggingface.co/eslamxm/MBart-finetuned-ur-xlsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.862 | 0.1 | 500 | 0.7994 | | 0.7785 | 0.2 | 1000 | 0.7464 | | 0.7568 | 0.3 | 1500 | 0.7119 | | 0.6927 | 0.4 | 2000 | 0.6837 | | 0.7486 | 0.49 | 2500 | 0.6636 | | 0.7208 | 0.59 | 3000 | 0.6463 | | 0.6784 | 0.69 | 3500 | 0.6297 | | 0.6286 | 0.79 | 4000 | 0.6166 | | 0.6339 | 0.89 | 4500 | 0.6063 | | 0.6738 | 0.99 | 5000 | 0.5999 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0