--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: beans_image_classification results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train[:500] args: default metrics: - name: Accuracy type: accuracy value: 0.96 --- # beans_image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1072 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 12 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.94 | 8 | 1.3666 | 0.66 | | 0.3651 | 2.0 | 17 | 0.3823 | 0.84 | | 0.5622 | 2.94 | 25 | 0.3333 | 0.86 | | 0.3373 | 4.0 | 34 | 0.1274 | 0.97 | | 0.2055 | 4.94 | 42 | 0.1882 | 0.93 | | 0.1819 | 6.0 | 51 | 0.2265 | 0.9 | | 0.1819 | 6.94 | 59 | 0.2395 | 0.91 | | 0.2428 | 8.0 | 68 | 0.1451 | 0.97 | | 0.1305 | 8.94 | 76 | 0.1554 | 0.94 | | 0.1203 | 9.41 | 80 | 0.1705 | 0.92 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1