--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.59375 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1554 - Accuracy: 0.5938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2477 | 1.0 | 10 | 1.3618 | 0.5625 | | 1.2002 | 2.0 | 20 | 1.3367 | 0.5625 | | 1.111 | 3.0 | 30 | 1.3178 | 0.5312 | | 1.0286 | 4.0 | 40 | 1.2215 | 0.5625 | | 0.9376 | 5.0 | 50 | 1.2117 | 0.5437 | | 0.8948 | 6.0 | 60 | 1.2304 | 0.5625 | | 0.8234 | 7.0 | 70 | 1.1634 | 0.5563 | | 0.8069 | 8.0 | 80 | 1.2422 | 0.5563 | | 0.7146 | 9.0 | 90 | 1.2053 | 0.5563 | | 0.709 | 10.0 | 100 | 1.1887 | 0.575 | | 0.6404 | 11.0 | 110 | 1.2208 | 0.5563 | | 0.6301 | 12.0 | 120 | 1.2319 | 0.5687 | | 0.6107 | 13.0 | 130 | 1.1684 | 0.6 | | 0.5825 | 14.0 | 140 | 1.1837 | 0.5813 | | 0.5454 | 15.0 | 150 | 1.1818 | 0.5687 | | 0.5517 | 16.0 | 160 | 1.1974 | 0.55 | | 0.4989 | 17.0 | 170 | 1.1304 | 0.6 | | 0.4875 | 18.0 | 180 | 1.2277 | 0.5375 | | 0.4881 | 19.0 | 190 | 1.1363 | 0.5875 | | 0.4951 | 20.0 | 200 | 1.1540 | 0.6062 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3