--- library_name: transformers language: - hi license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: SpeakerSegmentation_Hindi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeakerSegmentation_Hindi This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.4294 - Model Preparation Time: 0.0006 - Der: 0.1343 - False Alarm: 0.0233 - Missed Detection: 0.0270 - Confusion: 0.0840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4597 | 1.0 | 194 | 0.4796 | 0.0006 | 0.1635 | 0.0254 | 0.0315 | 0.1066 | | 0.3807 | 2.0 | 388 | 0.4499 | 0.0006 | 0.1502 | 0.0225 | 0.0312 | 0.0966 | | 0.379 | 3.0 | 582 | 0.4359 | 0.0006 | 0.1400 | 0.0217 | 0.0305 | 0.0878 | | 0.3363 | 4.0 | 776 | 0.4479 | 0.0006 | 0.1402 | 0.0240 | 0.0278 | 0.0884 | | 0.3082 | 5.0 | 970 | 0.4358 | 0.0006 | 0.1371 | 0.0245 | 0.0268 | 0.0859 | | 0.3125 | 6.0 | 1164 | 0.4287 | 0.0006 | 0.1361 | 0.0214 | 0.0293 | 0.0855 | | 0.3143 | 7.0 | 1358 | 0.4247 | 0.0006 | 0.1344 | 0.0233 | 0.0272 | 0.0839 | | 0.3081 | 8.0 | 1552 | 0.4211 | 0.0006 | 0.1328 | 0.0230 | 0.0271 | 0.0827 | | 0.2999 | 9.0 | 1746 | 0.4298 | 0.0006 | 0.1341 | 0.0233 | 0.0270 | 0.0838 | | 0.292 | 10.0 | 1940 | 0.4294 | 0.0006 | 0.1343 | 0.0233 | 0.0270 | 0.0840 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0