--- license: apache-2.0 tags: - moe - merge - mergekit - lazymergekit - abideen/NexoNimbus-7B - mlabonne/NeuralMarcoro14-7B --- # NexoNimbus-MoE-2x7B NexoNimbus-MoE-2x7B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [abideen/NexoNimbus-7B](https://huggingface.co/abideen/NexoNimbus-7B) * [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) ## 🧩 Configuration ```yaml base_model: teknium/OpenHermes-2.5-Mistral-7B gate_mode: hidden dtype: bfloat16 experts: - source_model: abideen/NexoNimbus-7B positive_prompts: - "Mathematics" - "Physics" - "Chemistry" - "Biology" - "Medicine" - "Engineering" - "Computer Science" negative_prompts: - "History" - "Philosophy" - "Linguistics" - "Literature" - "Art and Art History" - "Music Theory and Composition" - "Performing Arts (Theater, Dance)" - source_model: mlabonne/NeuralMarcoro14-7B positive_prompts: - "Earth Sciences (Geology, Meteorology, Oceanography)" - "Environmental Science" - "Astronomy and Space Science" - "Psychology" - "Sociology" - "Anthropology" - "Political Science" - "Economics" negative_prompts: - "Education" - "Law" - "Theology and Religious Studies" - "Communication Studies" - "Business and Management" - "Agricultural Sciences" - "Nutrition and Food Science" - "Sports Science" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "abideen/NexoNimbus-MoE-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```