import os import time import wandb import torch import argparse from datasets import load_dataset from typing import List, Dict, Union from transformers import ( AutoTokenizer, AutoModelForCausalLM, TrainingArguments, DataCollatorForLanguageModeling ) from src.args import default_args from src.orpo_trainer import ORPOTrainer from src.utils import preprocess_logits_for_metrics, dataset_split_selector class ORPO(object): def __init__(self, args) -> None: self.start = time.gmtime() self.args = args # Load Tokenizer print(">>> 1. Loading Tokenizer") self.tokenizer = AutoTokenizer.from_pretrained(self.args.model_name, cache_dir=self.args.cache_dir) if self.tokenizer.chat_template is None: self.tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" print(" 1-1. Chat Template Applied (<|user|> <|assistant|>)") else: pass self.tokenizer.pad_token_id = self.tokenizer.eos_token_id # Load Model print(">>> 2. Loading Model") if self.args.flash_attention_2: self.model = AutoModelForCausalLM.from_pretrained(self.args.model_name, cache_dir=self.args.cache_dir, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2") else: self.model = AutoModelForCausalLM.from_pretrained(self.args.model_name, cache_dir=self.args.cache_dir, torch_dtype=torch.bfloat16) # Load Dataset print(">>> 3. Loading Dataset") self.data = load_dataset(self.args.data_name, cache_dir=self.args.cache_dir) # Preprocess Dataset print(">>> 4. Filtering and Preprocessing Dataset") data_split = dataset_split_selector(self.data) if len(data_split) == 1: self.is_test = False train_split = data_split[0] else: self.is_test = True train_split = data_split[0] test_split = data_split[0] test = self.data[test_split].filter(self.filter_dataset) self.test = test.map(self.preprocess_dataset, batched=True, num_proc=self.args.num_proc, remove_columns=self.data[test_split].column_names) train = self.data[train_split].filter(self.filter_dataset) print(f"\n\n>>> {len(train)} / {len(self.data[train_split])} rows left after filtering by prompt length.") self.train = train.map(self.preprocess_dataset, batched=True, num_proc=self.args.num_proc, remove_columns=self.data[train_split].column_names) # Set WANDB & Logging Configurations self.run_name = f"{self.args.model_name.split('/')[-1]}-{self.args.data_name.split('/')[-1]}-ORPO-{self.start.tm_mday}-{self.start.tm_hour}-{self.start.tm_min}" self.save_dir = os.path.join('./checkpoints/', f"{self.args.data_name.split('/')[-1]}/{self.run_name}") self.log_dir = os.path.join('./checkpoints/', f"{self.args.data_name.split('/')[-1]}/{self.run_name}/logs") os.makedirs(self.save_dir, exist_ok=True) os.makedirs(self.log_dir, exist_ok=True) def preprocess_dataset(self, examples: Union[List, Dict]): if 'instruction' in examples.keys(): prompt_key = 'instruction' prompt = [self.tokenizer.apply_chat_template([{'role': 'user', 'content': item}], tokenize=False, add_generation_prompt=True) for item in examples[prompt_key]] chosen = [self.tokenizer.apply_chat_template([{'role': 'user', 'content': item_prompt}, {'role': 'assistant', 'content': item_chosen}], tokenize=False) for item_prompt, item_chosen in zip(examples[prompt_key], examples['chosen'])] rejected = [self.tokenizer.apply_chat_template([{'role': 'user', 'content': item_prompt}, {'role': 'assistant', 'content': item_rejected}], tokenize=False) for item_prompt, item_rejected in zip(examples[prompt_key], examples['rejected'])] else: prompt = [self.tokenizer.apply_chat_template([item[0]], tokenize=False, add_generation_prompt=True) for item in examples['chosen']] chosen = [self.tokenizer.apply_chat_template(item, tokenize=False) for item in examples['chosen']] rejected = [self.tokenizer.apply_chat_template(item, tokenize=False) for item in examples['rejected']] model_inputs = self.tokenizer(prompt, max_length=self.args.response_max_length, padding='max_length', truncation=True, return_tensors='pt') pos_labels = self.tokenizer(chosen, max_length=self.args.response_max_length, padding='max_length', truncation=True, return_tensors='pt') neg_labels = self.tokenizer(rejected, max_length=self.args.response_max_length, padding='max_length', truncation=True, return_tensors='pt') model_inputs['positive_input_ids'] = pos_labels['input_ids'] model_inputs['positive_attention_mask'] = pos_labels['attention_mask'] model_inputs['negative_input_ids'] = neg_labels['input_ids'] model_inputs['negative_attention_mask'] = neg_labels['attention_mask'] return model_inputs def filter_dataset(self, examples: Union[List, Dict]): if 'instruction' in examples.keys(): query = examples['instruction'] prompt_length = self.tokenizer.apply_chat_template([{'content': query, 'role': 'user'}], tokenize=True, add_generation_prompt=True, return_tensors='pt').size(-1) else: prompt_length = self.tokenizer.apply_chat_template([examples['chosen'][0]], tokenize=True, add_generation_prompt=True, return_tensors='pt').size(-1) if prompt_length < self.args.prompt_max_length: return True else: return False def prepare_trainer(self): wandb.init(name=self.run_name) arguments = TrainingArguments( torch_compile=self.args.torch_compile, output_dir=self.save_dir, # The output directory logging_dir=self.log_dir, logging_steps=50, learning_rate=self.args.lr, overwrite_output_dir=True, # overwrite the content of the output directory num_train_epochs=self.args.num_train_epochs, # number of training epochs per_device_train_batch_size=self.args.per_device_train_batch_size, # batch size for training per_device_eval_batch_size=self.args.per_device_eval_batch_size, # batch size for evaluation evaluation_strategy=self.args.evaluation_strategy, # batch size for evaluation save_strategy=self.args.evaluation_strategy, optim=self.args.optim, warmup_steps=self.args.warmup_steps, gradient_accumulation_steps=self.args.gradient_accumulation_steps, gradient_checkpointing=True, #if ('llama' in self.args.model_name.lower()) or ('mistral' in self.args.model_name.lower()) else False, gradient_checkpointing_kwargs={'use_reentrant':True}, load_best_model_at_end=True, do_train=True, do_eval= self.is_test, lr_scheduler_type=self.args.lr_scheduler_type, remove_unused_columns=False, report_to='wandb', run_name=self.run_name, bf16=True ) data_collator = DataCollatorForLanguageModeling(tokenizer=self.tokenizer, mlm=False) self.trainer = ORPOTrainer( model=self.model, alpha=self.args.alpha, pad=self.tokenizer.pad_token_id, args=arguments, train_dataset=self.train, eval_dataset=self.test if self.is_test else None, data_collator=data_collator, preprocess_logits_for_metrics=preprocess_logits_for_metrics ) def run(self): print(">>> 5. Preparing ORPOTrainer") self.prepare_trainer() self.trainer.train() # Saving code for FSDP if self.trainer.is_fsdp_enabled: self.trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") self.trainer.save_model() if __name__ == '__main__': parser = argparse.ArgumentParser("ORPO") args = default_args(parser) # Set WANDB configurations if args.wandb_entity is not None and args.wandb_project_name is not None: os.environ["WANDB_ENTITY"] = args.wandb_entity os.environ["WANDB_PROJECT"] = args.wandb_project_name else: pass os.environ["TOKENIZERS_PARALLELISM"] = 'false' print("================================================================================================\n") print(f">>> Fine-tuning {args.model_name} with ORPO on {args.data_name}\n") print("================================================================================================") print("\n\n>>> Summary:") print(f" - Lambda : {args.alpha}") print(f" - Training Epochs : {args.num_train_epochs}") print(f" - Prompt Max Length : {args.prompt_max_length}") print(f" - Response Max Length : {args.response_max_length}") item = ORPO(args=args) item.run()