--- language: - multilingual license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - abiyo27/BibleTTS_Ewe-Bible metrics: - wer model-index: - name: Whisper_Small_Ewe results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: BibleTTS type: abiyo27/BibleTTS_Ewe-Bible config: default split: None args: 'config: ewe, split: train' metrics: - name: Wer type: wer value: 10.094952523738131 --- # Whisper_Small_Ewe This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the BibleTTS dataset. It achieves the following results on the evaluation set: - Loss: 0.1021 - Wer: 10.0950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 14000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.2196 | 0.1802 | 4000 | 0.1780 | 19.3903 | | 0.1587 | 0.3605 | 8000 | 0.1375 | 13.4933 | | 0.1162 | 0.5407 | 12000 | 0.1021 | 10.0950 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1