from datasets import load_dataset from tokenizers import ByteLevelBPETokenizer # Load dataset kopi = load_dataset("/data/final_train.py", "full",split='train',cache_dir="/data/cache") datasetv2 = kopi.shuffle(seed=42) dataset = datasetv2[0:8000000] # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=100_000): for i in range(0, len(dataset), batch_size): yield dataset["text"][i: i + batch_size] # Customized training tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[ "", "", "", "", "", ]) # Save files to disk tokenizer.save("./tokenizer.json")