from datasets import load_dataset
from tokenizers import ByteLevelBPETokenizer
# Load dataset
kopi = load_dataset("/data/final_train.py", "full",split='train',cache_dir="/data/cache")
datasetv2 = kopi.shuffle(seed=42)
dataset = datasetv2[0:8000000]
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=100_000):
for i in range(0, len(dataset), batch_size):
yield dataset["text"][i: i + batch_size]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"",
"",
"",
"",
"",
])
# Save files to disk
tokenizer.save("./tokenizer.json")