--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-train_noise3 results: [] --- # whisper-medium-train_noise3 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1641 - Wer: 7.3711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 1385 | 0.1408 | 7.9993 | | 0.0824 | 2.0 | 2770 | 0.1419 | 7.4266 | | 0.0356 | 3.0 | 4155 | 0.1427 | 7.2788 | | 0.0131 | 4.0 | 5540 | 0.1548 | 7.3157 | | 0.0039 | 5.0 | 6925 | 0.1588 | 7.1864 | | 0.0011 | 6.0 | 8310 | 0.1641 | 7.3711 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3