--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: FS_27_06 results: [] --- # FS_27_06 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1744 - Accuracy: 0.966 - Precision: 0.9668 - Recall: 0.966 - F1: 0.9660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.6727 | 1.0 | 375 | 1.5301 | 0.93 | 0.9351 | 0.9300 | 0.9300 | | 0.2375 | 2.0 | 750 | 0.2548 | 0.958 | 0.9622 | 0.958 | 0.9583 | | 0.1424 | 3.0 | 1125 | 0.1922 | 0.96 | 0.9612 | 0.9600 | 0.9599 | | 0.0197 | 4.0 | 1500 | 0.1789 | 0.966 | 0.9670 | 0.966 | 0.9660 | | 0.0171 | 5.0 | 1875 | 0.1744 | 0.966 | 0.9668 | 0.966 | 0.9660 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1