--- base_model: BAAI/bge-m3 library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:828 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Comunicació prèvia per l'execució de cales, pous i sondejos, en terreny privat, previs a l'actuació definitiva. sentences: - Quin és el requisit per a l'execució de les obres en terreny privat? - Quin és el propòsit del tràmit de rectificació de dades personals? - Quin és el requisit per a la crema en zones de conservació? - source_sentence: En el mateix tràmit també es pot actualitzar el canvi de domicili o dades personals, si escau. sentences: - Quins tributs puc domiciliar amb aquest tràmit? - Quin és el compromís del titular de l'activitat en la Declaració responsable? - Quin és el tràmit que permet actualitzar les dades personals? - source_sentence: El reconeixement administratiu del dret comunicat es produeix salvat el dret de propietat, sens perjudici del de tercers ni de les competències d’altres organismes i administracions. sentences: - Quin és el tràmit que permet una major transparència en la gestió dels animals domèstics? - Quin és el requisit per considerar una tala de masses arbòries? - Quin és el reconeixement administratiu del dret comunicat? - source_sentence: El seu objecte és que -prèviament a la seva execució material- l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament, així com a les ordenances municipals. sentences: - Quin és el resultat de rectificar les meves dades personals? - Quin és el paper de les llicències urbanístiques en la instal·lació de construccions auxiliars o mòduls prefabricats? - Quin és l'objectiu de l'Ajuntament en aquest tràmit? - source_sentence: 'Permet sol·licitar l’autorització per a l’ús comú especial de la via pública per a reserves temporals d’estacionament i espai públic per: càrrega/descàrrega de materials diversos davant d''una obra;' sentences: - Quin és el propòsit de les actuacions de manteniment d'elements de façana i cobertes? - Quin és el tràmit per canviar el domicili del permís de conducció i del permís de circulació? - Quins són els materials que es poden càrregar/descarregar en l'ocupació i reserves temporals amb càrrega/descàrrega de materials? model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.1956521739130435 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5434782608695652 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6739130434782609 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7717391304347826 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1956521739130435 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18115942028985504 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13478260869565215 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07717391304347823 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1956521739130435 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5434782608695652 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6739130434782609 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7717391304347826 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.48504415203944085 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.39229641131815035 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4002530280745044 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.1956521739130435 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5543478260869565 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6739130434782609 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7717391304347826 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1956521739130435 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18478260869565213 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13478260869565215 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07717391304347823 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1956521739130435 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5543478260869565 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6739130434782609 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7717391304347826 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.48804421462232656 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3962215320910973 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.404212372178018 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.20652173913043478 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5434782608695652 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6521739130434783 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7608695652173914 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.20652173913043478 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18115942028985504 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13043478260869562 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07608695652173911 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.20652173913043478 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5434782608695652 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6521739130434783 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7608695652173914 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4840641874049137 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.39500086266390616 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4031258766496075 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.18478260869565216 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5434782608695652 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6521739130434783 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.75 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.18478260869565216 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18115942028985504 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13043478260869562 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07499999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.18478260869565216 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5434782608695652 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6521739130434783 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.75 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4702420475154915 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3799301242236025 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.38860307402910876 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.22826086956521738 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5434782608695652 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6956521739130435 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.782608695652174 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.22826086956521738 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18115942028985504 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13913043478260867 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07826086956521737 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.22826086956521738 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5434782608695652 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6956521739130435 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.782608695652174 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5045819494113778 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.41489820565907526 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4206777643300118 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.17391304347826086 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4891304347826087 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6630434782608695 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7608695652173914 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.17391304347826086 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16304347826086954 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1326086956521739 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07608695652173911 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.17391304347826086 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4891304347826087 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6630434782608695 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7608695652173914 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4628441336923734 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.36670548654244295 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.37290616382203134 name: Cosine Map@100 --- # SentenceTransformer based on BAAI/bge-m3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/sqv-v3") # Run inference sentences = [ "Permet sol·licitar l’autorització per a l’ús comú especial de la via pública per a reserves temporals d’estacionament i espai públic per: càrrega/descàrrega de materials diversos davant d'una obra;", "Quins són els materials que es poden càrregar/descarregar en l'ocupació i reserves temporals amb càrrega/descàrrega de materials?", 'Quin és el tràmit per canviar el domicili del permís de conducció i del permís de circulació?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1957 | | cosine_accuracy@3 | 0.5435 | | cosine_accuracy@5 | 0.6739 | | cosine_accuracy@10 | 0.7717 | | cosine_precision@1 | 0.1957 | | cosine_precision@3 | 0.1812 | | cosine_precision@5 | 0.1348 | | cosine_precision@10 | 0.0772 | | cosine_recall@1 | 0.1957 | | cosine_recall@3 | 0.5435 | | cosine_recall@5 | 0.6739 | | cosine_recall@10 | 0.7717 | | cosine_ndcg@10 | 0.485 | | cosine_mrr@10 | 0.3923 | | **cosine_map@100** | **0.4003** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1957 | | cosine_accuracy@3 | 0.5543 | | cosine_accuracy@5 | 0.6739 | | cosine_accuracy@10 | 0.7717 | | cosine_precision@1 | 0.1957 | | cosine_precision@3 | 0.1848 | | cosine_precision@5 | 0.1348 | | cosine_precision@10 | 0.0772 | | cosine_recall@1 | 0.1957 | | cosine_recall@3 | 0.5543 | | cosine_recall@5 | 0.6739 | | cosine_recall@10 | 0.7717 | | cosine_ndcg@10 | 0.488 | | cosine_mrr@10 | 0.3962 | | **cosine_map@100** | **0.4042** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.2065 | | cosine_accuracy@3 | 0.5435 | | cosine_accuracy@5 | 0.6522 | | cosine_accuracy@10 | 0.7609 | | cosine_precision@1 | 0.2065 | | cosine_precision@3 | 0.1812 | | cosine_precision@5 | 0.1304 | | cosine_precision@10 | 0.0761 | | cosine_recall@1 | 0.2065 | | cosine_recall@3 | 0.5435 | | cosine_recall@5 | 0.6522 | | cosine_recall@10 | 0.7609 | | cosine_ndcg@10 | 0.4841 | | cosine_mrr@10 | 0.395 | | **cosine_map@100** | **0.4031** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1848 | | cosine_accuracy@3 | 0.5435 | | cosine_accuracy@5 | 0.6522 | | cosine_accuracy@10 | 0.75 | | cosine_precision@1 | 0.1848 | | cosine_precision@3 | 0.1812 | | cosine_precision@5 | 0.1304 | | cosine_precision@10 | 0.075 | | cosine_recall@1 | 0.1848 | | cosine_recall@3 | 0.5435 | | cosine_recall@5 | 0.6522 | | cosine_recall@10 | 0.75 | | cosine_ndcg@10 | 0.4702 | | cosine_mrr@10 | 0.3799 | | **cosine_map@100** | **0.3886** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.2283 | | cosine_accuracy@3 | 0.5435 | | cosine_accuracy@5 | 0.6957 | | cosine_accuracy@10 | 0.7826 | | cosine_precision@1 | 0.2283 | | cosine_precision@3 | 0.1812 | | cosine_precision@5 | 0.1391 | | cosine_precision@10 | 0.0783 | | cosine_recall@1 | 0.2283 | | cosine_recall@3 | 0.5435 | | cosine_recall@5 | 0.6957 | | cosine_recall@10 | 0.7826 | | cosine_ndcg@10 | 0.5046 | | cosine_mrr@10 | 0.4149 | | **cosine_map@100** | **0.4207** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1739 | | cosine_accuracy@3 | 0.4891 | | cosine_accuracy@5 | 0.663 | | cosine_accuracy@10 | 0.7609 | | cosine_precision@1 | 0.1739 | | cosine_precision@3 | 0.163 | | cosine_precision@5 | 0.1326 | | cosine_precision@10 | 0.0761 | | cosine_recall@1 | 0.1739 | | cosine_recall@3 | 0.4891 | | cosine_recall@5 | 0.663 | | cosine_recall@10 | 0.7609 | | cosine_ndcg@10 | 0.4628 | | cosine_mrr@10 | 0.3667 | | **cosine_map@100** | **0.3729** | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 828 training samples * Columns: positive and anchor * Approximate statistics based on the first 828 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------| | Consultar l'estat tributari d'un contribuent. Us permet consultar l'estat dels rebuts i liquidacions que estan a nom del contribuent titular d'un certificat electrònic, així com els elements que configuren el càlcul per determinar el deute tributari de cadascun d'ells. | Com puc consultar l'estat tributari d'un contribuent? | | L'informe facultatiu servirà per tramitar una autorització de residència temporal per arrelament social. | Quin és el tràmit relacionat amb la residència a l'Ajuntament? | | Aquesta targeta, és el document que dona dret a persones físiques o jurídiques titulars de vehicles adaptats destinats al transport col·lectiu de persones amb discapacitat... | Quin és el benefici de tenir la targeta d'aparcament de transport col·lectiu per a les persones amb discapacitat? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.2 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.2 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:-------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.9231 | 3 | - | 0.3914 | 0.3466 | 0.3625 | 0.3778 | 0.3067 | 0.3810 | | 1.8462 | 6 | - | 0.3835 | 0.3940 | 0.3789 | 0.3857 | 0.3407 | 0.3808 | | 2.7692 | 9 | - | 0.4028 | 0.4159 | 0.3961 | 0.4098 | 0.3803 | 0.4029 | | 3.0769 | 10 | 3.1546 | - | - | - | - | - | - | | **4.0** | **13** | **-** | **0.3992** | **0.4209** | **0.3905** | **0.4121** | **0.3806** | **0.4009** | | 4.6154 | 15 | - | 0.4003 | 0.4207 | 0.3886 | 0.4031 | 0.3729 | 0.4042 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.1 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.35.0.dev0 - Datasets: 3.0.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```