--- base_model: mychen76/tinyllama-colorist-v2 inference: false license: apache-2.0 model_creator: mychen76 model_name: tinyllama-colorist-v2 quantized_by: afrideva tags: - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 pipeline_tag: text-generation --- # mychen76/tinyllama-colorist-v2-GGUF Quantized GGUF model files for [tinyllama-colorist-v2](https://huggingface.co/mychen76/tinyllama-colorist-v2) from [mychen76](https://huggingface.co/mychen76) | Name | Quant method | Size | | ---- | ---- | ---- | | [tinyllama-colorist-v2.q2_k.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q2_k.gguf) | q2_k | 482.15 MB | | [tinyllama-colorist-v2.q3_k_m.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q3_k_m.gguf) | q3_k_m | 549.85 MB | | [tinyllama-colorist-v2.q4_k_m.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q4_k_m.gguf) | q4_k_m | 667.82 MB | | [tinyllama-colorist-v2.q5_k_m.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q5_k_m.gguf) | q5_k_m | 782.05 MB | | [tinyllama-colorist-v2.q6_k.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q6_k.gguf) | q6_k | 903.42 MB | | [tinyllama-colorist-v2.q8_0.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q8_0.gguf) | q8_0 | 1.17 GB | ## Original Model Card: MODEL: "mychen76/tinyllama-colorist-v2" - is a finetuned TinyLlama model using color dataset. MOTIVATION: A fun experimental model for using TinyLlama as Llama2 replacement for resource constraint environment. PROMPT FORMAT: "<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"" MODEL USAGE: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from transformers import pipeline def print_color_space(hex_color): def hex_to_rgb(hex_color): hex_color = hex_color.lstrip('#') return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4)) r, g, b = hex_to_rgb(hex_color) print(f'{hex_color}: \033[48;2;{r};{g};{b}m \033[0m') tokenizer = AutoTokenizer.from_pretrained(model_id_colorist_final) pipe = pipeline( "text-generation", model=model_id_colorist_final, torch_dtype=torch.float16, device_map="auto", ) from time import perf_counter start_time = perf_counter() prompt = formatted_prompt('give me a pure brown color') sequences = pipe( prompt, do_sample=True, temperature=0.1, top_p=0.9, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_new_tokens=12 ) for seq in sequences: print(f"Result: {seq['generated_text']}") output_time = perf_counter() - start_time print(f"Time taken for inference: {round(output_time,2)} seconds") ``` Result: #807070 ``` Result: <|im_start|>user give me a pure brown color<|im_end|> <|im_start|>assistant: #807070<|im_end> Time taken for inference: 0.19 seconds ``` Dataset: "burkelibbey/colors"