--- base_model: lpetreadg/trained-tinyllama-ultrachat inference: false license: apache-2.0 model-index: - name: trained-tinyllama-ultrachat results: [] model_creator: lpetreadg model_name: trained-tinyllama-ultrachat pipeline_tag: text-generation quantized_by: afrideva tags: - generated_from_trainer - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # lpetreadg/trained-tinyllama-ultrachat-GGUF Quantized GGUF model files for [trained-tinyllama-ultrachat](https://huggingface.co/lpetreadg/trained-tinyllama-ultrachat) from [lpetreadg](https://huggingface.co/lpetreadg) | Name | Quant method | Size | | ---- | ---- | ---- | | [trained-tinyllama-ultrachat.q2_k.gguf](https://huggingface.co/afrideva/trained-tinyllama-ultrachat-GGUF/resolve/main/trained-tinyllama-ultrachat.q2_k.gguf) | q2_k | None | | [trained-tinyllama-ultrachat.q3_k_m.gguf](https://huggingface.co/afrideva/trained-tinyllama-ultrachat-GGUF/resolve/main/trained-tinyllama-ultrachat.q3_k_m.gguf) | q3_k_m | None | | [trained-tinyllama-ultrachat.q4_k_m.gguf](https://huggingface.co/afrideva/trained-tinyllama-ultrachat-GGUF/resolve/main/trained-tinyllama-ultrachat.q4_k_m.gguf) | q4_k_m | None | | [trained-tinyllama-ultrachat.q5_k_m.gguf](https://huggingface.co/afrideva/trained-tinyllama-ultrachat-GGUF/resolve/main/trained-tinyllama-ultrachat.q5_k_m.gguf) | q5_k_m | None | | [trained-tinyllama-ultrachat.q6_k.gguf](https://huggingface.co/afrideva/trained-tinyllama-ultrachat-GGUF/resolve/main/trained-tinyllama-ultrachat.q6_k.gguf) | q6_k | None | | [trained-tinyllama-ultrachat.q8_0.gguf](https://huggingface.co/afrideva/trained-tinyllama-ultrachat-GGUF/resolve/main/trained-tinyllama-ultrachat.q8_0.gguf) | q8_0 | None | ## Original Model Card: # trained-tinyllama-ultrachat This model is a fine-tuned version of [PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3767 | 0.08 | 100 | 1.3685 | | 1.3494 | 0.17 | 200 | 1.3490 | | 1.3436 | 0.25 | 300 | 1.3389 | | 1.3231 | 0.33 | 400 | 1.3331 | | 1.3278 | 0.42 | 500 | 1.3296 | | 1.3214 | 0.5 | 600 | 1.3276 | | 1.3376 | 0.58 | 700 | 1.3266 | | 1.3227 | 0.67 | 800 | 1.3261 | | 1.3329 | 0.75 | 900 | 1.3259 | | 1.3185 | 0.83 | 1000 | 1.3258 | | 1.332 | 0.92 | 1100 | 1.3258 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1