--- base_model: amazingvince/zephyr-smol_llama-100m-dpo-full inference: false license: apache-2.0 model-index: - name: zephyr-smol_llama-100m-dpo-full results: [] model_creator: amazingvince model_name: zephyr-smol_llama-100m-dpo-full pipeline_tag: text-generation quantized_by: afrideva tags: - generated_from_trainer - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # amazingvince/zephyr-smol_llama-100m-dpo-full-GGUF Quantized GGUF model files for [zephyr-smol_llama-100m-dpo-full](https://huggingface.co/amazingvince/zephyr-smol_llama-100m-dpo-full) from [amazingvince](https://huggingface.co/amazingvince) | Name | Quant method | Size | | ---- | ---- | ---- | | [zephyr-smol_llama-100m-dpo-full.fp16.gguf](https://huggingface.co/afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.fp16.gguf) | fp16 | 204.25 MB | | [zephyr-smol_llama-100m-dpo-full.q2_k.gguf](https://huggingface.co/afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q2_k.gguf) | q2_k | 51.90 MB | | [zephyr-smol_llama-100m-dpo-full.q3_k_m.gguf](https://huggingface.co/afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q3_k_m.gguf) | q3_k_m | 58.04 MB | | [zephyr-smol_llama-100m-dpo-full.q4_k_m.gguf](https://huggingface.co/afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q4_k_m.gguf) | q4_k_m | 66.38 MB | | [zephyr-smol_llama-100m-dpo-full.q5_k_m.gguf](https://huggingface.co/afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q5_k_m.gguf) | q5_k_m | 75.31 MB | | [zephyr-smol_llama-100m-dpo-full.q6_k.gguf](https://huggingface.co/afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q6_k.gguf) | q6_k | 84.80 MB | | [zephyr-smol_llama-100m-dpo-full.q8_0.gguf](https://huggingface.co/afrideva/zephyr-smol_llama-100m-dpo-full-GGUF/resolve/main/zephyr-smol_llama-100m-dpo-full.q8_0.gguf) | q8_0 | 109.33 MB | ## Original Model Card: # zephyr-smol_llama-100m-dpo-full This model is a fine-tuned version of [amazingvince/zephyr-smol_llama-100m-sft-full](https://huggingface.co/amazingvince/zephyr-smol_llama-100m-sft-full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5465 - Rewards/chosen: -0.0518 - Rewards/rejected: -0.7661 - Rewards/accuracies: 0.7170 - Rewards/margins: 0.7143 - Logps/rejected: -450.2018 - Logps/chosen: -588.7877 - Logits/rejected: -4.9602 - Logits/chosen: -5.2468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6549 | 0.26 | 1000 | 0.6037 | -0.1205 | -0.4850 | 0.6550 | 0.3644 | -447.3903 | -589.4750 | -4.7410 | -5.0341 | | 0.5349 | 0.52 | 2000 | 0.5779 | -0.0126 | -0.5080 | 0.6770 | 0.4955 | -447.6208 | -588.3951 | -4.8645 | -5.1463 | | 0.6029 | 0.77 | 3000 | 0.5657 | 0.0902 | -0.4636 | 0.6900 | 0.5538 | -447.1767 | -587.3674 | -5.0016 | -5.2911 | | 0.5273 | 1.03 | 4000 | 0.5596 | 0.0496 | -0.5449 | 0.7040 | 0.5944 | -447.9891 | -587.7738 | -4.9972 | -5.2892 | | 0.5 | 1.29 | 5000 | 0.5557 | 0.0585 | -0.6110 | 0.7050 | 0.6695 | -448.6505 | -587.6843 | -5.0108 | -5.3047 | | 0.5056 | 1.55 | 6000 | 0.5499 | 0.0054 | -0.6719 | 0.7130 | 0.6773 | -449.2598 | -588.2154 | -4.9988 | -5.2907 | | 0.4608 | 1.81 | 7000 | 0.5500 | -0.0376 | -0.7494 | 0.7030 | 0.7118 | -450.0341 | -588.6455 | -5.0549 | -5.3406 | | 0.426 | 2.07 | 8000 | 0.5472 | -0.0106 | -0.7021 | 0.7100 | 0.6916 | -449.5617 | -588.3751 | -4.9750 | -5.2626 | | 0.3875 | 2.32 | 9000 | 0.5464 | -0.0011 | -0.7171 | 0.7140 | 0.7159 | -449.7113 | -588.2810 | -4.9935 | -5.2796 | | 0.397 | 2.58 | 10000 | 0.5462 | -0.0391 | -0.7566 | 0.7190 | 0.7175 | -450.1064 | -588.6602 | -4.9737 | -5.2618 | | 0.4486 | 2.84 | 11000 | 0.5459 | -0.0493 | -0.7667 | 0.7110 | 0.7174 | -450.2074 | -588.7629 | -4.9569 | -5.2441 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1