--- base_model: distilbert/distilbert-base-multilingual-cased library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:867042 - loss:MultipleNegativesRankingLoss widget: - source_sentence: Even children can understand it. sentences: - मी सगळीकडे छापले. मी लिहिले आणि सर्व काही मोजले. आणि नऊ महिन्यामध्ये मुले कोणत्याही भाषेतला संगणकासोबत मोकळे सोडल्यावर पश्चिम देशातील कार्यालातील सेक्रेटरीएवढ्या पातळीवर येऊ शकतो - Anslået bliver 5000 kvinder om året dræbt som følge af domestisk vold, mens tusindvis overlever med varige mén. - इस बात को बच्चे भी समझते हैं। - source_sentence: What do you want to buy? sentences: - 这是我们为福特汽车公司做的项目, - İçtenlikle umuyorum ki yakında hastalığından iyileşeceksin. - എന്താ വാങ്ങിക്കേണ്ടത്? തോക്കാണോ? - source_sentence: Oh, come on, Charles. sentences: - Este es un ejemplo que preparé para mi hija. - Noaptea a fost atât de rece încât, atunci când m-am întors, eram aproape îngheţat. - No tak, Charlesi! - source_sentence: In 1830 English mathematician Charles Babbage published a book entitled Reflections on the Decline of Science in England to summarize what he observed to be the existing state of scientific affairs. sentences: - В 1830 г. английский математик Чарлз Бэббедж опубликовал книгу Reflections on the Decline of Science in England, в которой он описал свои наблюдения состояния научного мира. - A szakosodás ezeken a területek új és érdekes munkahelyekhez vezethet. - Grimes seoses Darwini „Liikide tekkimisega ”:„ Mitte ükski teine raamat, mis kunagi on trükitud, pole tekitanud mõtlevate inimeste keskel taolist poleemikat. - source_sentence: Palm DOC Conduit for KPilot sentences: - PalmDOC- conduit foar KPilot - Sabíem, doncs, que si volíem veure actuar aquesta peça de metall segons la mecànica quàntica, hauríem de fer fora tots els altres passatgers. - Man nepatinka gyventi kaime. --- # SentenceTransformer based on distilbert/distilbert-base-multilingual-cased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("agentlans/distilbert-base-multilingual-cased-aligned") # Run inference sentences = [ 'Palm DOC Conduit for KPilot', 'PalmDOC- conduit foar KPilot', 'Man nepatinka gyventi kaime.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 867,042 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:-----------------------------------------------------------------------|:------------------------------------------------------------------------| | They need to be internationally recognized and supported. | Mereka harus diakui dan dibantu secara internasional. | | I ride with these kids once a week, every Tuesday. | Ik rijd met deze kinderen een keer per week, elke dinsdag. | | We still have some. | අපි ගාව තව ඒවා තියෙනවනේ. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `num_train_epochs`: 1 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:------:|:------:|:-------------:| | 0.0046 | 500 | 0.1996 | | 0.0092 | 1000 | 0.087 | | 0.0138 | 1500 | 0.0771 | | 0.0185 | 2000 | 0.0646 | | 0.0231 | 2500 | 0.0443 | | 0.0277 | 3000 | 0.0526 | | 0.0323 | 3500 | 0.05 | | 0.0369 | 4000 | 0.0479 | | 0.0415 | 4500 | 0.0477 | | 0.0461 | 5000 | 0.0427 | | 0.0507 | 5500 | 0.0343 | | 0.0554 | 6000 | 0.0358 | | 0.0600 | 6500 | 0.0452 | | 0.0646 | 7000 | 0.0397 | | 0.0692 | 7500 | 0.0289 | | 0.0738 | 8000 | 0.0274 | | 0.0784 | 8500 | 0.0364 | | 0.0830 | 9000 | 0.0283 | | 0.0877 | 9500 | 0.0295 | | 0.0923 | 10000 | 0.0337 | | 0.0969 | 10500 | 0.0303 | | 0.1015 | 11000 | 0.0252 | | 0.1061 | 11500 | 0.0241 | | 0.1107 | 12000 | 0.0225 | | 0.1153 | 12500 | 0.0263 | | 0.1199 | 13000 | 0.0255 | | 0.1246 | 13500 | 0.0311 | | 0.1292 | 14000 | 0.0201 | | 0.1338 | 14500 | 0.0209 | | 0.1384 | 15000 | 0.0205 | | 0.1430 | 15500 | 0.0242 | | 0.1476 | 16000 | 0.0332 | | 0.1522 | 16500 | 0.0346 | | 0.1569 | 17000 | 0.0225 | | 0.1615 | 17500 | 0.0245 | | 0.1661 | 18000 | 0.0166 | | 0.1707 | 18500 | 0.0196 | | 0.1753 | 19000 | 0.0264 | | 0.1799 | 19500 | 0.0212 | | 0.1845 | 20000 | 0.0201 | | 0.1891 | 20500 | 0.0238 | | 0.1938 | 21000 | 0.0175 | | 0.1984 | 21500 | 0.022 | | 0.2030 | 22000 | 0.0201 | | 0.2076 | 22500 | 0.0197 | | 0.2122 | 23000 | 0.0137 | | 0.2168 | 23500 | 0.017 | | 0.2214 | 24000 | 0.031 | | 0.2261 | 24500 | 0.0238 | | 0.2307 | 25000 | 0.0194 | | 0.2353 | 25500 | 0.024 | | 0.2399 | 26000 | 0.022 | | 0.2445 | 26500 | 0.0276 | | 0.2491 | 27000 | 0.016 | | 0.2537 | 27500 | 0.0203 | | 0.2583 | 28000 | 0.0245 | | 0.2630 | 28500 | 0.0161 | | 0.2676 | 29000 | 0.0132 | | 0.2722 | 29500 | 0.0142 | | 0.2768 | 30000 | 0.0171 | | 0.2814 | 30500 | 0.0207 | | 0.2860 | 31000 | 0.0189 | | 0.2906 | 31500 | 0.0169 | | 0.2953 | 32000 | 0.0225 | | 0.2999 | 32500 | 0.0224 | | 0.3045 | 33000 | 0.0114 | | 0.3091 | 33500 | 0.0213 | | 0.3137 | 34000 | 0.0146 | | 0.3183 | 34500 | 0.0154 | | 0.3229 | 35000 | 0.0218 | | 0.3275 | 35500 | 0.0096 | | 0.3322 | 36000 | 0.0147 | | 0.3368 | 36500 | 0.0186 | | 0.3414 | 37000 | 0.0214 | | 0.3460 | 37500 | 0.0231 | | 0.3506 | 38000 | 0.0165 | | 0.3552 | 38500 | 0.0157 | | 0.3598 | 39000 | 0.0128 | | 0.3645 | 39500 | 0.018 | | 0.3691 | 40000 | 0.0183 | | 0.3737 | 40500 | 0.0203 | | 0.3783 | 41000 | 0.02 | | 0.3829 | 41500 | 0.0165 | | 0.3875 | 42000 | 0.0128 | | 0.3921 | 42500 | 0.0106 | | 0.3967 | 43000 | 0.0174 | | 0.4014 | 43500 | 0.0168 | | 0.4060 | 44000 | 0.0114 | | 0.4106 | 44500 | 0.0158 | | 0.4152 | 45000 | 0.0108 | | 0.4198 | 45500 | 0.0141 | | 0.4244 | 46000 | 0.0137 | | 0.4290 | 46500 | 0.0137 | | 0.4337 | 47000 | 0.0215 | | 0.4383 | 47500 | 0.0123 | | 0.4429 | 48000 | 0.0138 | | 0.4475 | 48500 | 0.0152 | | 0.4521 | 49000 | 0.0144 | | 0.4567 | 49500 | 0.016 | | 0.4613 | 50000 | 0.0132 | | 0.4659 | 50500 | 0.0164 | | 0.4706 | 51000 | 0.0155 | | 0.4752 | 51500 | 0.0145 | | 0.4798 | 52000 | 0.0173 | | 0.4844 | 52500 | 0.02 | | 0.4890 | 53000 | 0.0168 | | 0.4936 | 53500 | 0.011 | | 0.4982 | 54000 | 0.0116 | | 0.5029 | 54500 | 0.009 | | 0.5075 | 55000 | 0.0143 | | 0.5121 | 55500 | 0.0111 | | 0.5167 | 56000 | 0.0138 | | 0.5213 | 56500 | 0.0104 | | 0.5259 | 57000 | 0.0146 | | 0.5305 | 57500 | 0.0116 | | 0.5351 | 58000 | 0.0157 | | 0.5398 | 58500 | 0.013 | | 0.5444 | 59000 | 0.0144 | | 0.5490 | 59500 | 0.0134 | | 0.5536 | 60000 | 0.0114 | | 0.5582 | 60500 | 0.0101 | | 0.5628 | 61000 | 0.0164 | | 0.5674 | 61500 | 0.0151 | | 0.5721 | 62000 | 0.0138 | | 0.5767 | 62500 | 0.0107 | | 0.5813 | 63000 | 0.0102 | | 0.5859 | 63500 | 0.0153 | | 0.5905 | 64000 | 0.0103 | | 0.5951 | 64500 | 0.0136 | | 0.5997 | 65000 | 0.0107 | | 0.6043 | 65500 | 0.0101 | | 0.6090 | 66000 | 0.0101 | | 0.6136 | 66500 | 0.0117 | | 0.6182 | 67000 | 0.0113 | | 0.6228 | 67500 | 0.0131 | | 0.6274 | 68000 | 0.0068 | | 0.6320 | 68500 | 0.0053 | | 0.6366 | 69000 | 0.0113 | | 0.6413 | 69500 | 0.0119 | | 0.6459 | 70000 | 0.0094 | | 0.6505 | 70500 | 0.0072 | | 0.6551 | 71000 | 0.0171 | | 0.6597 | 71500 | 0.0121 | | 0.6643 | 72000 | 0.0134 | | 0.6689 | 72500 | 0.0147 | | 0.6735 | 73000 | 0.0075 | | 0.6782 | 73500 | 0.0125 | | 0.6828 | 74000 | 0.0064 | | 0.6874 | 74500 | 0.0071 | | 0.6920 | 75000 | 0.0073 | | 0.6966 | 75500 | 0.0075 | | 0.7012 | 76000 | 0.0097 | | 0.7058 | 76500 | 0.01 | | 0.7105 | 77000 | 0.0123 | | 0.7151 | 77500 | 0.0093 | | 0.7197 | 78000 | 0.0103 | | 0.7243 | 78500 | 0.0179 | | 0.7289 | 79000 | 0.0091 | | 0.7335 | 79500 | 0.0121 | | 0.7381 | 80000 | 0.0104 | | 0.7428 | 80500 | 0.0083 | | 0.7474 | 81000 | 0.0116 | | 0.7520 | 81500 | 0.0084 | | 0.7566 | 82000 | 0.0077 | | 0.7612 | 82500 | 0.0081 | | 0.7658 | 83000 | 0.0101 | | 0.7704 | 83500 | 0.0093 | | 0.7750 | 84000 | 0.0095 | | 0.7797 | 84500 | 0.0107 | | 0.7843 | 85000 | 0.0108 | | 0.7889 | 85500 | 0.0095 | | 0.7935 | 86000 | 0.0082 | | 0.7981 | 86500 | 0.0103 | | 0.8027 | 87000 | 0.0069 | | 0.8073 | 87500 | 0.009 | | 0.8120 | 88000 | 0.0081 | | 0.8166 | 88500 | 0.0074 | | 0.8212 | 89000 | 0.0069 | | 0.8258 | 89500 | 0.0066 | | 0.8304 | 90000 | 0.0065 | | 0.8350 | 90500 | 0.0065 | | 0.8396 | 91000 | 0.0088 | | 0.8442 | 91500 | 0.008 | | 0.8489 | 92000 | 0.0069 | | 0.8535 | 92500 | 0.0095 | | 0.8581 | 93000 | 0.0082 | | 0.8627 | 93500 | 0.0068 | | 0.8673 | 94000 | 0.006 | | 0.8719 | 94500 | 0.0082 | | 0.8765 | 95000 | 0.0121 | | 0.8812 | 95500 | 0.0098 | | 0.8858 | 96000 | 0.0083 | | 0.8904 | 96500 | 0.008 | | 0.8950 | 97000 | 0.0053 | | 0.8996 | 97500 | 0.0102 | | 0.9042 | 98000 | 0.0093 | | 0.9088 | 98500 | 0.0042 | | 0.9134 | 99000 | 0.0093 | | 0.9181 | 99500 | 0.0138 | | 0.9227 | 100000 | 0.0105 | | 0.9273 | 100500 | 0.0079 | | 0.9319 | 101000 | 0.0118 | | 0.9365 | 101500 | 0.0072 | | 0.9411 | 102000 | 0.0094 | | 0.9457 | 102500 | 0.0108 | | 0.9504 | 103000 | 0.0092 | | 0.9550 | 103500 | 0.0062 | | 0.9596 | 104000 | 0.0073 | | 0.9642 | 104500 | 0.0089 | | 0.9688 | 105000 | 0.0092 | | 0.9734 | 105500 | 0.0076 | | 0.9780 | 106000 | 0.0103 | | 0.9826 | 106500 | 0.0064 | | 0.9873 | 107000 | 0.0072 | | 0.9919 | 107500 | 0.0052 | | 0.9965 | 108000 | 0.0061 |
### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.0 - Transformers: 4.46.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```