--- language: - ar license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: QURANIC Whisper Large V3 - revised results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common_voice_16_1 type: mozilla-foundation/common_voice_16_1 config: ar split: None args: 'config: ar, split: train' metrics: - name: Wer type: wer value: 163.38589913248052 --- # QURANIC Whisper Large V3 - revised This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2252 - Wer: 163.3859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3095 | 0.21 | 2000 | 0.3293 | 155.0801 | | 0.2412 | 0.41 | 4000 | 0.3059 | 287.9687 | | 0.1762 | 0.62 | 6000 | 0.2843 | 152.7845 | | 0.1906 | 0.82 | 8000 | 0.2645 | 124.8897 | | 0.0952 | 1.03 | 10000 | 0.2535 | 129.0233 | | 0.0955 | 1.24 | 12000 | 0.2567 | 141.4259 | | 0.0865 | 1.44 | 14000 | 0.2360 | 205.5690 | | 0.1363 | 1.65 | 16000 | 0.2288 | 187.0938 | | 0.1038 | 1.86 | 18000 | 0.2197 | 178.2311 | | 0.062 | 2.06 | 20000 | 0.2252 | 163.3859 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.0 - Datasets 2.18.0 - Tokenizers 0.15.1