--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: Augmented split: train args: Augmented metrics: - name: Accuracy type: accuracy value: 0.9659090909090909 --- # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50 This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1199 - Accuracy: 0.9659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4562 | 1.0 | 55 | 0.3207 | 0.8898 | | 0.372 | 2.0 | 110 | 0.2667 | 0.9068 | | 0.2776 | 3.0 | 165 | 0.2862 | 0.9125 | | 0.2018 | 4.0 | 220 | 0.1966 | 0.9398 | | 0.2751 | 5.0 | 275 | 0.1937 | 0.9375 | | 0.2764 | 6.0 | 330 | 0.1199 | 0.9659 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3