--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: Skin_Cancer split: train args: Skin_Cancer metrics: - name: Accuracy type: accuracy value: 0.8338983050847457 --- # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50 This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5108 - Accuracy: 0.8339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.005 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.97 | 18 | 1.3358 | 0.5017 | | 1.7327 | 2.0 | 37 | 0.9711 | 0.6102 | | 1.1314 | 2.97 | 55 | 0.6877 | 0.7254 | | 0.7956 | 4.0 | 74 | 0.6924 | 0.7458 | | 0.6511 | 4.97 | 92 | 0.7236 | 0.6915 | | 0.5609 | 6.0 | 111 | 0.5625 | 0.8169 | | 0.4585 | 6.97 | 129 | 0.5356 | 0.8102 | | 0.3988 | 8.0 | 148 | 0.8137 | 0.7186 | | 0.35 | 8.97 | 166 | 0.5569 | 0.8136 | | 0.3431 | 10.0 | 185 | 0.6979 | 0.7729 | | 0.2888 | 10.97 | 203 | 0.5444 | 0.8 | | 0.2553 | 12.0 | 222 | 0.6462 | 0.7729 | | 0.2263 | 12.97 | 240 | 0.5093 | 0.8373 | | 0.2263 | 14.0 | 259 | 0.5331 | 0.8169 | | 0.2323 | 14.97 | 277 | 0.5521 | 0.8203 | | 0.1601 | 16.0 | 296 | 0.5984 | 0.7831 | | 0.1645 | 16.97 | 314 | 0.6850 | 0.7932 | | 0.202 | 18.0 | 333 | 0.5786 | 0.8 | | 0.1762 | 18.97 | 351 | 0.5961 | 0.8305 | | 0.1546 | 20.0 | 370 | 0.6169 | 0.8373 | | 0.1583 | 20.97 | 388 | 0.4907 | 0.8373 | | 0.1168 | 22.0 | 407 | 0.4846 | 0.8508 | | 0.1193 | 22.97 | 425 | 0.5030 | 0.8475 | | 0.1275 | 24.0 | 444 | 0.5287 | 0.8373 | | 0.1214 | 24.97 | 462 | 0.5240 | 0.8407 | | 0.1107 | 26.0 | 481 | 0.5439 | 0.8407 | | 0.1107 | 26.97 | 499 | 0.4901 | 0.8305 | | 0.0921 | 28.0 | 518 | 0.5037 | 0.8407 | | 0.1105 | 28.97 | 536 | 0.5105 | 0.8305 | | 0.0883 | 29.19 | 540 | 0.5108 | 0.8339 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3