--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-finetuned-en-ar results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: arabic metrics: - name: Rouge1 type: rouge value: 0.2824 --- # mt5-finetuned-en-ar This model is a fine-tuned version of [ahmeddbahaa/mt5-small-finetuned-mt5-en](https://huggingface.co/ahmeddbahaa/mt5-small-finetuned-mt5-en) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2314 - Rouge1: 0.2824 - Rouge2: 0.0 - Rougel: 0.2902 - Rougelsum: 0.298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.1685 | 1.0 | 4130 | 2.4262 | 0.0941 | 0.0235 | 0.1098 | 0.1098 | | 2.686 | 2.0 | 8260 | 2.2853 | 0.2824 | 0.0 | 0.298 | 0.298 | | 2.481 | 3.0 | 12390 | 2.2314 | 0.2824 | 0.0 | 0.2902 | 0.298 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6