--- tags: - summarization - ur - encoder-decoder - xlm-roberta - Abstractive Summarization - roberta - generated_from_trainer datasets: - xlsum model-index: - name: xlmroberta2xlmroberta-finetune-summarization-ur results: [] --- # xlmroberta2xlmroberta-finetune-summarization-ur This model is a fine-tuned version of [](https://huggingface.co/) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 5.4576 - Rouge-1: 26.51 - Rouge-2: 9.4 - Rouge-l: 23.21 - Gen Len: 19.99 - Bertscore: 68.15 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1