--- library_name: peft license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: llama-3.1-8b-squadv2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Llama-3.1-8B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ahmedelgebaly/SQuad_2_Alpaca type: alpaca split: train test_datasets: - path: ahmedelgebaly/SQuad_2_Alpaca type: alpaca split: validation dataset_prepared_path: output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama-3.1-8b-squadv2 wandb_entity: wandb_watch: wandb_name: llama-3.1-8b-squadv2-v0 wandb_log_model: hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2 gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 1 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ```

# llama-3.1-8b-squadv2 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4871 | 0.0033 | 1 | 1.5437 | | 0.9076 | 0.2512 | 77 | 0.9311 | | 0.9122 | 0.5024 | 154 | 0.9173 | | 0.8535 | 0.7537 | 231 | 0.9113 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1