--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer metrics: - accuracy model-index: - name: Train-Test-Augmentation-V5-beit-base results: [] --- # Train-Test-Augmentation-V5-beit-base This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6899 - Accuracy: 0.8442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0473 | 1.0 | 55 | 0.8312 | 0.7759 | | 0.3767 | 2.0 | 110 | 0.5476 | 0.8336 | | 0.176 | 3.0 | 165 | 0.5248 | 0.8256 | | 0.07 | 4.0 | 220 | 0.5597 | 0.8527 | | 0.043 | 5.0 | 275 | 0.5707 | 0.8472 | | 0.0272 | 6.0 | 330 | 0.6225 | 0.8264 | | 0.0168 | 7.0 | 385 | 0.5721 | 0.8553 | | 0.0076 | 8.0 | 440 | 0.5967 | 0.8608 | | 0.006 | 9.0 | 495 | 0.7036 | 0.8272 | | 0.007 | 10.0 | 550 | 0.7167 | 0.8400 | | 0.0048 | 11.0 | 605 | 0.6734 | 0.8506 | | 0.0023 | 12.0 | 660 | 0.7424 | 0.8332 | | 0.0032 | 13.0 | 715 | 0.7283 | 0.8340 | | 0.002 | 14.0 | 770 | 0.6805 | 0.8502 | | 0.0021 | 15.0 | 825 | 0.6899 | 0.8442 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.15.2