--- license: mit language: - ru - en tags: - PyTorch - Transformers --- # ru-en RoBERTa large model for Sentence Embeddings in Russian and English. The model is described [in this article]() Russian MTEB [metrics]() For better quality, use cls token embeddings. Also, use next prefixes for tasks: - For assimethric retrieval tasks like search/QuestAnsw: "search_query: "/"search_document: ". - NLI, NLU and paraphrasing tasks: "classification: ". - Title body/abstract and clasterization: "clustering: ". ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #You might to use two variants of mode for embeddings creation: #CLS token embs or MEAN Pooling. #You can choose embs pooling with best quality for your downstream tasks. #Mean Pooling example - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['Привет! Как твои дела?', 'А правда, что 42 твое любимое число?'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("ai-forever/ru-en-RoSBERTa") model = AutoModel.from_pretrained("ai-forever/ru-en-RoSBERTa") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=512, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #In this case, mean pooling sentence_mean_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) #In this case, cls "pooling" last_hidden_states = model_output[0] sentence_cls_embeddings = last_hidden_states[:,0] ```